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Abstract— Robots are expected to be able to navigate in
crowded or human-populated environments. The dynamics
of such environments are, however, the major obstacle to
autonomous robot deployments. Development of models that
can predict and forecast changes in human-populated areas is
therefore crucial for autonomous robots intended to help people
in their environment. In this work, we propose and discuss a
new dataset collection that shall be executed in the following
years. We aim to gather a new, long-term dataset composed of
multiple sensory outputs from diverse types of environments.
The data will also be post-processed to extract the semantic
data and prepared for use by the robotic scientific community.

I. INTRODUCTION

During the last decade we have seen much development
in the world of robotics, but fully autonomous robotic
deployments still remain elusive. One of the primary reasons
for this is that while their navigation algorithms work well,
their robustness outside of lab conditions can be less-than
ideal, and therefore they still require some level of human
oversight.

Traditional approaches to robot navigation in uncontrolled
environments use static maps combined with reactive plan-
ning for unexpected events. However, many unexpected
events are caused by human actions, especially movement
through the robot’s operational environment. Reactive re-
planning using sense-plan-act frameworks, such as those
used in the Robot Operating System (ROS) [1] move base
package, can lead to a perception of clumsiness [2], slow
response, and frequent re-planning, resulting in negative
emotions towards the robot [3]. Failing to navigate in human-
populated or crowded environments is a major obstacle to
robotic deployments and their acceptance in the long-term.
Therefore, incorporating expected human movement into the
robot’s navigation and planning is crucial for autonomous
robots intended to help people in their environment.

Addressing this, several large projects attempted to work
on autonomous robots operating in human-populated en-
vironments [4], [5], [6]. These environments tend to be
dynamic, with natural daily and seasonal changes [7], but
more importantly, their dynamics are shaped by human
actions [8]. A promising way to achieve long-term human-
aware navigation is to include spatio-temporal maps into the
navigation systems to support decision-making in advance of
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Fig. 1. Tesla factory lidar scan. Red lines highlight the usual path of
people, while green ones are used less frequently. Green circles highlight
the most interesting crossroads - A is the nearest crossroad to the bathroom,
and B includes a resting area. Yellow circles highlight less frequent crossing
with expectedly strong temporal patterns, and orange circles highlight places
where people usually stay for some time.

the navigational task. Robots which forecast the dynamics
of human customs and adjust their decisions accordingly
perform better at human-centric tasks [5], [9], [10], [11],
[12], [13]. Furthermore, it has been shown that autonomous
robots that take human habits into account are more likely
to be accepted by society [3], [4], [14].

Developing spatio-temporal predictive maps requires long-
term datasets of natural human environments. The most
known dataset of this kind is the ATC dataset of a shopping
mall [15]. Although it consists of detections taken throughout
one year, the data is collected only during opening hours on
Wednesdays and Sundays. In addition, researchers from the
Lincoln Centre for Autonomous Systems (L-CAS) gathered
their own UoL dataset [16] that consists of several consecu-
tive weeks of lidar point clouds and human detections [17].
However, local security rules did not allow researchers to
gather the data out of working hours. Using a very similar
system, researchers created the UTBM dataset [18] that was
supposed to be long-term, similar to the ATC one, and
continuous. The effort resulted in a dataset several months
long covering entire days. However, due to political problems
in the country that led to the universities closing, a large



Fig. 2. MHT lecturer office dataset: snapshots of the person present and
absent.

Fig. 3. UTBM dataset: Velodyne HDL-32E 3D lidar position near
the UTBM main entrance hall (left) and a birds-eye view of the lidar’s
environment. Courtesy of [18].

part of the dataset consists of empty halls. Changes in
security rules and the following COVID-19 epidemic led to
an inability of researchers to continue collecting the data.
The meaningful data now includes one month and one week
of continuous data.

Despite the discontinuity in the ATC dataset, it is still
commonly used [19], [20], [21]. From our experience, a more
complex dataset is needed for developing an autonomous
system that includes service robots with various tasks. The
service robots do not only work during opening hours;
they need to cooperate with technical and service staff
who work in public places outside of working hours. For
example, security robots need to understand differences in
behaviour between customers and utility workers. Therefore,
we are starting to gather continuous long-term datasets from
a factory (see Fig. 1). As the data gathering and dataset
preparation is planned for the next few years, we are looking
for advice and possible cooperation with scientists from the
long-term human motion prediction community.

II. DATASETS

A. Our Current Datasets

For year-long forecasts, we usually use open data ‘MHT
building lecturer office’ for testing long-term models. The
data was gathered during the STRANDS project [5] that can
be found in the project’s web pages [22]. The data consists
of preprocessed video frames with a frame rate of 0.2Hz.
Every frame consists of a set of depth values captured with
a 320×240 RGB-D camera (see Fig. 2). The length of the
video is more than 2 years with several few-days-long gaps.
The video shows one of the lecturer’s offices at the University
of Lincoln.

The second dataset we usually use to test our models is
the UTBM dataset [18]. The data is not directly accessible
to the public, but only by request. It contains two long-term
segments gathered during one year. The first segment was
collected in one of the UTBM building halls of approx-
imately 500m2. As shown in Fig. 3, a Velodyne 32-layer
lidar was placed in the reception near the building door to
ensure safe 24h operation. The spatial placement of the lidar
was carefully determined to ensure maximum field-of-view
(i.e., approximately 200m2) of the hall beyond the glass
windows. The raw data of the lidar was recorded to ROS
rosbags 24 hours per day for several months. However, due
to political unrest, only one month (March 2019) includes
normal student behaviour. The second segment, one week
long, was collected in December 2019 in a similar way. There
is also the third segment, still in the post-processing stage,
collected in the same hall but with a 128-layer lidar outside
but close to the reception. The data collection was performed
for three consecutive days during March 2023.

The MHT dataset is two years long but includes only
one significant phenomenon connected to human customs.
The dataset’s length allows us to test a model’s deterioration
over months-long periods. However, testing the models on
one phenomenon can lead to overfitting the chosen scenario.
The UTBM dataset consists of human flows in the entrance
hall, but it is limited only to a few weeks. Although the data
consists of many different people, their usual behaviour is
walking through or waiting in the hall, with rare exceptions
of utility workers providing their services. Moreover, the
usable data cover only one topologically trivial area - the
hall.

B. Available Datasets from Other Teams

The ATC dataset [15] covers an area of 900 m2 over one
year. The tasks people are performing are connected with
shopping. We can find there different types of behaviour like
walking from one shop to another, reading some information,
waiting, chatting and so on. However, as was said earlier, the
datasets consist only of Thursdays and Sundays, and only of
working hours. The models developed over such data need
not comprise subtle differences between individual working
days and Saturday and Sunday. They cannot be tested in
an ability to provide apparent differences between days and
nights. We had a similar experience working on the UoL
dataset [16]. One can expect that out of the working hours,
there is nothing to care much about. However, an autonomous
system should be prepared to utilise the time when the halls
are empty, and therefore it needs to know what is happening
during the night to schedule its tasks accordingly. Moreover,
during non-working hours, there is a higher possibility of a
security breach [23] that must be distinguished from rare but
expectable events or regular utility activities.

One can find other human-dynamics-centred datasets like
L-CAS [17], THÖR [24], or Magni [25] datasets. Although
interesting, these datasets do not meet our concept of long-
term datasets. They do not focus on human customs nor
model deterioration.



C. Dataset under Construction

We made an agreement with the management and owners
of a factory that we have the freedom to place sensors
usually used in mobile robotics. The factory consists of
two large sheds and multiple rooms with an overall area
of approximately 2500m2, more than twice the area of the
ATC dataset. Figure 1 shows a cross-section of a lidar
scan of the factory. Our team, in cooperation with the
factory management, chose and highlighted the best areas
for data collection. The lines highlight the frequent paths
the employees usually use. The circles highlight important
crossings and places where employees assemble.

We aim to gather a new, similarly long or longer dataset
than the MHT building lecturer office composed of people
working on multiple tasks in an environment with a more
complicated structure than the UTBM dataset. We expect
people to perform more types of tasks than in UTBM
datasets. Besides walking, waiting, and cleaning the area,
we expect activities like resting, eating, refilling their water
containers, and, similarly to the MHT dataset, working in
front of their tables. That can give us a more generalised
perspective in analysing the deterioration of models over
time and the rules of pedestrian flows. Contrary to the ATC
dataset, we also plan to gather the data continually during
all days of the week and outside the usual working hours.

The number of people present in the area will probably
not exceed 50 people, which is less than in UTBM and
ATC datasets. However, two companies are in the building
fabricating different products while sharing changing rooms,
bathrooms, and the official entrance. One company is present
there for approximately three decades while the second
one is starting up, hiring new employees, and preparing
new operations. As the building is positioned between two
cities, a non-public bus for employees connects with public
transportation. Such transportation is felicitous because the
entry time of a large section of employees is determined
by the most prolonged delay in documented public transit.
The delays are usually connected with weather changes that
can be included in the models and allow researchers to
interconnect the predictions of human customs with weather
forecasting.

The management is in favour of the experiments. They see
cooperation with researchers as an opportunity to raise the
working morale and moderate discomfort due to experiments
as an acceptable price. On the other hand, the workers
positively perceive the experiments as a non-traditional event
in an overall invariable work. As a result, it is possible to
agree with the management to delay the bus or move a shift
a little bit to test the ability of models to detect unexpected
or anomalous events as a part of the experimental design.
There is also a possibility to perform field experiments with
piloted or supervised robots.

D. Challenges in Data Gathering

The factory is a harsh environment. There is heavy ma-
chinery creating strong magnetic fields. The data cables
need to be carried through high-voltage pipes. Computers

need to be placed far away from heavy machinery and
reactive chemicals. Nothing can be placed near the gas tubes
or hydrogen tanks. The environment is dusty, and the air
temperature in some places exceeds 40 degrees Celsius.
Multiple security fences around some machines block a WiFi
communication between the computers. On the other hand,
the ceilings are 4− 8 meters high, which can give sensors
the required scope.

Unlike in the UTBM dataset, human flows are not the only
dynamics in the environment. There are also chairs moving
from one place to another. Some cupboards are used, and
some working positions are occupied only on different days.
Large machines are run occasionally, and some rooms are
accessible only for one or a few specific people during their
particular tasks. Those dynamics are different from human
flows but tightly bound to people’s activity. Therefore, the
structure of the area is not purely static but ”reacts” and
changes its shape according to the actual organisation of the
work. A successful autonomous system should predict these
small structural changes because they are connected with the
differences in human flows.

E. Privacy Issues

The privacy and data protection rules limit personal or oth-
erwise sensitive data manipulation only inside the building.
Although the management does not plan to use the personal
data from the measurements, they find the sensors’ placement
as motivational components for the workers. The workers
are used to working with expensive products, and their only
concern about the data gathering is not to be identified by
the sensors when they smoke near the hydrogen tanks.

The internet connection to the factory is stable but slow
for data transfer. The data must be transferred from the
factory manually, but the computers and sensors can be
handled using a secure connection from outside. Personal
or sensitive data needs to be processed or anonymised inside
the compound.

III. DATA COLLECTION

Our primary way to collect data of human motion tends
to be with lidar sensors. These have the advantage of being
small, light-weight, and not intrusive on the environment.
They also yield more fruitful data than highly bespoke
sensors such as door position detectors, and detecting people
passing through an area with a single beam. Furthermore,
compared to cameras, lidar data is much easier to process as
properties such as depth can be directly estimated (especially
at long range), they’re insensitive to lighting conditions,
whilst also manipulation of raw data does not open privacy
issues. Moreover, they have a large field-of-view. However
this raises the question of whether the community would
agree with these assessments for the task of human detection,
or perhaps whether it would be advantageous to include other
sensors in the data collection process.

The current arrangement for data collection involves hav-
ing a series of computers set up running ROS. Each of
these is running the necessary drivers of the lidar sensor,



in this case a 128-layer Ouster sensor giving 3D coverage
of the environment at 10Hz. The sensors have slightly
overlapping fields-of-view, to ensure the consistent ability
to track individuals. The sensor is left running continuously,
with another ROS node collecting the data, compressing it,
and saving it to disk.

The throughput of the raw lidar data amounts to just over
100MB per second per sensor, an unwieldy size for this
kind of usage. Consequently the run-time compression of
the data is essential. While lossless lz4 compression offered
approximately a 50% saving compared to the raw data, this
kind of compression is still not enough for long-term use.
As a result, a bespoke lossy compression was added.

The compression algorithm works by taking a key-frame
from the lidar, and then in subsequent frames only stor-
ing lidar points with significant changes in their spatial
position. These are found by matching the corresponding
lidar beams between the frames, and finding the euclidean
change in position. Jitter inevitably is present in the data,
so there is some thresholding, but the suppression of all
static background lidar points is not a significant challenge.
Furthermore, when storing only key-frames and the deltas,
traditional compression algorithms can still be used on the
data to reduce the file-size further. As a result, the volume
of data being stored was able to be reduced to below 0.1%
of the original file size.

The data that saved as a result of this process has been
modified from the raw data. Visibly, the jitter present on the
walls of rooms is completely absent in the data processed
in this way, while people are still visible moving around
the environment. While very effective in making the dataset
a manageable size, it is not clear whether the community
would appreciate the data being processed in such a way.
While generally the raw data has the benefit of being closer
to reality, some compromise needs to be found, so the
question exists if this kind of compression is acceptable for
the community. We believe that such an approach will not
affect the quality or usability of the dataset, as the dynamic
objects will be captured in full, real-time detail, while static
background objects such as walls, less likely to be of interest,
will still be captured, but less often.

The rest of the data collection pipeline is run offline.
The compressed data can be downloaded from each of the
machines periodically, and then the data can be worked on.
Firstly, they are decompressed individually back into a usable
form. As mentioned, the background lidar points will be
completely static, but any dynamic areas of the pointcloud
will be present at the full frame rate.

Then, these dynamic points are passed to human detection
algorithms to extract the semantic data from the scene.
The detection algorithms are those used in the aforemen-
tioned UTBM data collection [17]. Specifically, the Adaptive
Clustering algorithm is implemented on each frame of the
pointcloud to divide it into different segments, ideally with
each segment corresponds to an object. The segmentation
performance of the algorithm for pedestrians is considered
to be state-of-the-art [26]. Then the segments are filtered

using a human volumetric model. On the other hand, since
the UTBM building is completely closed at night and ensures
that no one is stranded inside, we use the evening data as a
reference background and then match it with daytime data
to remove any false positive samples efficiently. As a result,
human samples can be easily extracted from the point cloud
without using any machine learning methods. It is worth
noting that, there is an assumption here that the moving
objects in the UTBM building fitted in the human volume
model are all human beings.

Once the raw human detections have been extracted from
the dataset, a final stage of filtering is applied before the final
data is ready. This filtering process removes any spurious
detections of people from the scene, and fills in any missing
detections where otherwise there was continuous detections.
As the raw data was collected at 10Hz, data association
for tracking is relatively straight-forward, however as the
original data is present, it is possible to verify this manually,
or apply different methods for human detection and tracking.

The data about human detections and tracking is therefore
provided as a convenience for people wishing to work with
the dataset, however there is still the option for people to
try their own detection and tracking algorithms on the data
should they wish to.

IV. CONCLUSIONS

In this paper, we have looked at why long-term datasets of
people will be important for the long-term future of robotics.
Currently, there is a lack of high-quality datasets available
for this task. In an attempt to correct this, we have started
collecting our own dataset based on 3D lidars, to be used
for analysis of the typical presence and movement patterns
of people. In order to make this dataset as beneficial to the
community as possible, we would like to obtain feedback
on what would ideally be present in such a dataset, ranging
from technical details over additional sensors to the spatial
and temporal scale of the measurements. The dataset details,
along with the forms to provide potential feedback and
suggestions, is available at http://3l4ar.science.
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