
Online and Real-Time Tracking in a Surveillance Scenario

Oliver Urbann1,∗, Oliver Bredtmann2, Maximilian Otten1, Jan-Philip Richter1, Thilo Bauer2, David Zibriczky2

1Fraunhofer IML, Dortmund, Germany 2DB Schenker, Essen, Germany
∗oliver.urbann@iml.fraunhofer.de

Abstract— This paper presents an approach for tracking
in a surveillance scenario. Typical aspects for this scenario
are a 24/7 operation with a static camera mounted above
the height of a human with many objects or people. The
Multiple Object Tracking Benchmark 20 (MOT20) reflects this
scenario best. We can show that our approach is real-time
capable on this benchmark and outperforms all other real-
time capable approaches in HOTA, MOTA, and IDF1. We
achieve this with two contributions. First, we apply a fast
Siamese network reformulated for linear runtime (instead of
quadratic) to generate fingerprints from detections. Second,
we extend the walking path as predicted by the Kalman filter
with an additional motion model that also takes into account
unforeseen changes in the intention of the tracked person.
Thus, it is possible to associate the detections to Kalman filters
based on multiple tracking specific ratings: Cosine similarity
of fingerprints and Intersection over Union (IoU).

I. INTRODUCTION

Tracking is a broad research area with a long history and

a wide area of application. This paper focuses on scenarios

in a typical surveillance application: A 24/7 video stream

where many objects or persons must be tracked at the same

time. Here, cameras are usually mounted at a height that

reduces occlusions and have fixed positions and angles. Due

to the 24/7 operation, the tracking algorithm must run in

real-time to avoid a growing buffer with unprocessed data.

Typical applications are in warehouses optimizing material

routing or fork lifter paths, passenger routing in airports to

reduce queues, or crowd management in a sports stadium.

The MOT20 dataset [4] reflects all these challenges best and

is thus chosen for evaluation in this paper. It furthermore

includes day and night scenes and provides a frame rate of

30 Hz giving an indicator for a real-time capable algorithm.

We intentionally do not consider datasets containing im-

ages captured by moving cameras (e.g. MOT17). This would

require an additional time-consuming motion compensation

that is not necessary in our targeted scenario.

A. Related Work

Evaluations of over 20 different approaches are available

on MOT20. As depicted in Fig. 1, a significant gap divides

two clusters of algorithms regarding the runtime given by

the authors. These algorithms are evaluated on different

systems and thus the definition of real-time can only be

vague. Furthermore, the execution time also depends on

The research was supported by the German Federal Ministry of Education
and Research and the State of North Rhine-Westphalia under the Lamarr
Institute for Machine Learning and Artificial Intelligence, grant number
LAMARR22B.

35 40 45 50

0

30

60

HOTA

fps

SORT20 [3] Surveily GMPHD_Rd20 [1] Proposed Method

MOTer [12] TransCtr [12] GNNMatch [8] UnsupTrack [6]

Tracktor++v2 [2] center-reid SFS RTv1

ALBOD FGRNetIV D4C GNNMatch[8]

HOMI_Tracker ITM

Fig. 1. Approaches solving the MOT20 benchmark with focus on runtime
vs. Higher Order Tracking Accuracy (HOTA) [7]. A clear gap can be seen
between real-time (green) and non-real-time approaches (blue). The red dot
indicates the proposed approach.

the number of detections. Thus, within our development we

focus on linear runtime with respect to the big O notation.

For comparison with other approaches based on MOT20, we

define real-time capability based on the gap in Fig. 1. One

cluster can be seen below the gap with varying performance

regarding High Order Tracking Accuracy (HOTA). We define

the algorithms belonging to the other cluster above the gap

as realtime capable, although not all are above 30 fps which

is the frame rate of MOT20. Solutions belonging to this

cluster rely on the detections given in MOT20. To remain

fast, one cannot expand those algorithms by complex image

processing. Faster RCNN [10] is used to provide detections

in MOT20, but it reveals a weak performance in crowded

test images. Thus, the performance of real-time capable

approaches is rather low.

This is even more obvious when the solutions are sorted

by the MOTA metric. All real-time capable solutions perform

below all non-real-time approaches, see Table I.

SORT [3] is an example of a simple but fast approach. It

applies a Kalman filter for tracking that is updated with de-

tection bounding boxes. The assignment is done by applying

the Intersection over Union (IoU) distance to build a cost

matrix solved by the Hungarian algorithm. However, as this

approach ignores appearance features, it is fast but tracking

performance is rather low (see Fig. 1).

Baisa [1] proposes to improve tracking performance by ap-

plying an identification network (IdNet) that extracts features



from detections. A GM-PHD filter first uses detections to

output estimates which are then used for an estimate to track

association. Two disadvantages are worth mentioning here:

1) Different and inconsistent distance metrics are applied

throughout the pipeline and 2) IdNet is trained on single

images instead of the (dis)similarity of two patches.

Using a CNN for similarity estimation is a common

approach. Ding et al. [5] propose to build triplets for training

a CNN that extracts feature representations from image

patches. Siamese networks are widely used in single object

tracking [9] and person re-identification [11].

B. Contribution

In this section we introduce the contribution of this work

with a short introduction before.

1) LTSiam: The base of the proposed tracker is similar to

SORT. I.e. we apply Kalman filter, one for each track, and

update them utilizing detections. For our targeted scenario,

this solution is sufficiently fast but lacks accuracy due to

erroneous detections. We thus improve this approach by

applying an additional feature extraction from image method.

Siamese networks could help to improve the association of

possibly erroneous detections to tracks. However, Siamese

networks applied for tracking usually have a O(N · M) ≈
O(N2) runtime, where N is the number of tracks and M

the number of detections. This is especially problematic in

a 24/7 surveillance scenario.

Our first contribution is LTSiam, a CNN that

• is based on well-evaluated and well-performing Siamese

networks,

• is trained with the same similarity measure used for

inference,

• is specifically trained for multi object tracking applica-

tion,

• can be partially applied with linear instead of quadratic

complexity and

• can be applied in an online and real-time capable

algorithm.

2) Human Motion Model: Kalman filters designed for

tracking can predict the person’s position in the next frame

based on current motion. However, by design, only the

current velocity and acceleration are considered. In addition,

the estimated uncertainty is based only on the measurements.

Thus, Kalman filters do not take into account possible

changes in intentions, walking directions, etc., which can

lead to poor tracking performance.

Our second contribution is to incorporate a motion model

that estimates the uncertainty due to unpredictable changes

in speed and direction. This uncertainty is then applied as

an additional cost to the mappings of detections to tracks,

where the cost is higher, if the distance is higher relative

to the expectation. A concrete prediction of a position is

thus not provided, since this could only be done on the

basis of actual information, for which the Kalman filter is

provided here. The estimation is therefore a complement to

the Kalman filter, not a replacement or correction.

In the evaluation, we can show that this approach out-

performs other real-time approaches in HOTA, MOTA, and

IDF1 on the MOT20 dataset while maintaining real time.

II. APPROACH

In this paper, we assume that detections are given from an

external source like a CNN detector. We thus exclude this

step from our timing analysis as a second system could be

utilized for obtaining detections in parallel.

A. Track to Detection Assignment

For each person tracked we apply a Kalman filter. This

allows us to continue tracking even if a person is not detected

for some frames. Thus, detections must be associated with

Kalman filters. We do this by creating an N×M cost matrix

C where a single value cn,m expresses a cost for assigning

detection m to track n. Afterwards, we utilize the Hungarian

algorithm to minimize the overall cost and to output a set of

selected associations A = {(m1, n1) , . . . }.

This is a multi-criteria optimization consisting of the

Intersection over Union cIoU , human motion model ch (see

Sec. II-C) and the cost cf of the fingerprint similarity (see

Sec. II-B):

cn,m = cIoUn,m + α · chn,m + β · cfn,m, (1)

where α and β are weights heuristically determined.

1) Appearance of new untracked persons: Let us assume

a person enters the observed area with detection j. Two cases

can occur: 1) The detection is not assigned to any existing

track which can and should happen if N < M , 2) detection

j is assigned to an existing track i. The second case can

occur if another person i left the observed area at the same

time. To handle this, if

ci,j > Λc (2)

we assume that this assignment is wrong, where Λc is

a heuristically determined threshold. In this case the assign-

ment (i, j) is removed from A. Afterwards, for all detections

not in A new tracks are created.

2) Disappearance of tracked persons: In case a track is

not contained in A (i.e. no detection is assigned to this track

in this frame) there are three possible reasons: 1) the person

finally left the observed area, 2) it is temporarily hidden and

3) it is a false negative detection. Cases 2) and 3) cannot be

distinguished and are thus handled equally by continuing the

track (without sensor updates). To handle case 1) the track

is deleted if it did not get any updates for T frames.

B. LTSiam

Fig. 2 depicts the proposed LTSiam network. As the setup

of the cost matrix (see Eq. 1) has necessarily a quadratic

complexity we limit the required calculations for this to

a minimum. Therefore, the comparison of the fingerprints

FA and FB is realized by a simple cosine similarity. The

result is -1 for diametrically opposed vectors, 0 for vectors

oriented at 90◦ relative to each other, and 1 for same



VGG16

FC 4096

ReLU

FC 100

60× 35× 3

Cosine SimilarityFA

VGG16

FC 4096

ReLU

FC 100

FB

y = x2

y ∈ [0, . . . , 1]

Fig. 2. Complete LTSiam model used for training. Input for a VGG
backbone is a small image patch. A first fully connected layer gives a feature
vector consisting of 4096 values. Another fully connected layer shortens this
to 100 values to ensure a short runtime of the cosine similarity. The latter
has a complexity of O(n2) during inference. After squaring the output 0
means "dissimilar" and 1 "similar".

orientation. However, interpreting -1 as dissimilar and 1

as similar patches (with 0 in between) does not lead to

adequate training results. Thus, the similarity is squared, so

both diametrically opposed and same oriented vectors are

interpreted as similar patches. Given this network setup, the

training leads to satisfying results and additionally opens up

the possibility for inference with linear complexity.

To achieve this, we split off the backbone including fully

connected layers. This can be utilized to infer the fingerprint

at complexity O(M). The resulting fingerprint is saved in the

track to which the detection was assigned and can be reused

in the next frame. The only remaining part with squared

complexity is then the application of the fingerprints for

determining the squared cosine similarity for Eq. 1:

cfn,m = 1−

[

Fn · Fm

∥Fn∥∥Fm∥

]2

(3)

Note that the fingerprints are inferred for image patches

derived from detections only. These patches thus do not

depend on the tracking results. This is an important property,

because GPUs are fast in processing large batches of images,

but to run the inference an overhead in the calculation

time compromises the real-time capability. We thus buffer

detections for 1-2 s and run the inference then once. This

hides the overhead due to initialization sufficiently. Although

the tracking results are then delayed about this buffer length,

it is still an online algorithm as results are continuously

provided during runtime.

For training the network, we utilize the training scenes of

the MOT20 and MOT171 datasets providing 3856 annotated

tracks. From this, we extract 1437801 patches from detec-

tions with resolution 35 × 60. Each training batch consists

1Note that moving cameras are only problematic for the Kalman filter.
Training image patch similarities are not affected by this.

of 50% pairs showing the same person and 50% showing

different persons. We only use pairs from the same scene as

otherwise the background from different scenes would obvi-

ously indicate different persons. Furthermore, in contrast to

Siamese networks for reidentification, the temporal distance

between image pairs is at most the timeout T , see Sec. II-

A.2. Thus, we limit the temporal distance during training to

50 frames for a pair2. Due to the large number of possible

pairs under these constraints (up to 1012) we generate pairs

randomly during training.

Training is performed with a batch size of 50 in 1000000

steps. The mean average error is minimized utilizing stochas-

tic gradient descent.

C. Human Motion Model

As motivated in Sec. I-B, chn,m is a cost to model the

human behavior in the cost function as a complement to

the Kalman filter. A Kalman filter predicts the current path

based on velocity and acceleration. However, the tracked

person can change his or her mind at any time and e.g. turn

back. The uncertainty estimation of the Kalman filter is not

intended for the resulting error in the prediction. We thus

model the uncertainty due to unpredictable changes in speed

and direction by the following assumptions: A human walks

generally at speed vmax and a change in direction is always

and instantly possible. Assuming that td is the last time frame

with a sensor update for track n, the maximum distance dmax
n

walked since td is achieved by changing direction only at tp
and then walking at vmax. It can thus be defined by a linear

function

dmax
n = (t− td) · vmax + cd, (4)

where cd is a constant that can be utilized to defined an

initial uncertainty in the detected position. To determine chn,m
for a track and detection pair (n,m), we use the euclidian

distance d(n,m) between them and scale this value by dmax:

chn,m =
d(n,m)

dmax
n

. (5)

As you can see, the cost is lower when the detection m

is close to the track n and increases more slowly when we

expect the track to be farther away due to missing detections.

III. EVALUATION

As motivated in the introduction, we evaluate the ef-

fectiveness and real-time capability based on the MOT20

benchmark [4] using the usual metrics. The High Order

Tracking Accuracy (HOTA) is the geometric mean of de-

tection and association accuracy [7] and is considered as

a better alignment with human subjective perception. It is

considered as a furter development of the Multi Object

Tracking Accuracy (MOTA), which combines false positives,

missed targets and identity switches. In contrast, IDF1 is the

F1 score for the ID and focuses on the association accuracy

2We do not limit it to timeout T as this value may change after training.



Short HOTA MOTA IDF1 MOTP RT (s)

UnsupTrack 41.7 53.6 50.6 80.1 3467.3

TransCtr 43.5 61.0 49.8 79.5 4478.5

Tracktor++v2 42.1 52.6 52.7 79.9 3795.0

SFS 32.7 50.8 41.1 74.9 44 500.0

RTv1 55.1 60.6 67.9 78.8 1500.0

MOTer 44.3 62.3 50.3 79.9 4478.5

ITM 39.6 50.6 48.6 78.6 2500.0

HOMI_Tracker 37.3 51.2 43.0 79.6 600.0

GNNMatch 40.2 54.5 49.0 79.4 86 400.0

FGRNetIV 42.5 55.4 52.7 79.4 3500.0

D4C 51.5 54.8 64.4 77.7 819.6

ALBOD 43.5 56.5 51.1 79.4 3600.0

Surveily 36.0 44.6 42.5 76.1 150.5

SORT20 36.1 42.7 45.1 78.5 78.2

GMPHD_Rd20 35.6 44.7 43.5 77.5 177.9

LTSiam 40.4 46.5 49.4 77.1 148

TABLE I

RESULTS ON THE MOT20 BENCHMARK FOR ONLINE ALGORITHMS,

DEVIDED INTO TWO PARTS FOR REAL-TIME SOLUTIONS (BOTTOM) AND

NON-REAL-TIME (TOP). HERE, THE FIRST FOUR COLUMNS OF THE

MOT20 BENCHMARK RESULTS ARE SHOWN. THE FULL LIST IS

AVAILABLE AT MOTCHALLENGE.NET/RESULTS/MOT20. THE

COLUMN RT SHOWS THE RUNTIME OF THE CORRESPONDING

ALGORITHM FOR ALL 4479 FRAMES OF THE TEST SCENES.

Fig. 3. Example shot from the first scene in MOT20 dataset. White boxes
represent detections as given by the dataset and thin yellow lines tracks.
Overall three person currently are not detected but still tracked well during
motion.

rather than detection. The MOT Precision (MOTP) measures

the overlap bewteen correct predictions and ground truth.

The tracking results of the test scenes must be submitted,

ground truth data for own evaluation is not provided. Results

are then automatically generated, listed in Table I. Fig. 3 and

Fig. 4 depict qualitative results.

Note that in contrast to all other values the runtime is

provided by the authors of the algorithms. Our evaluation

system is equipped with an Intel Xeon Platinum 8180

Processor. We did not parallelize the algorithm, so only a

single core is utilized except for the GPU parts. Running

on the GPU is the inference of a fingerprint and the cosine

similarity (in different steps). For this, we utilize an NVIDIA

V100 GPU.

As can be seen in Table I and Fig. 1, among real-time

capable approaches our proposed method performs best in

Fig. 4. Scene four in MOT20 dataset (overall image and 2 cutouts). From
all tracks id 804 is marked before entering a hidden area, while walking
behind and after that area. As can be seen, the location where the person
is visible again is predicted well.

HOTA, MOTA and IDF1 and even outperforms non-real-time

capable approaches.

As described in section I-A, SORT20 follows a similar

approach ignoring appearance features. Thus, the proposed

LTSiam and human motion model can be assumed as the

main cause for the improved performance. In contrast, both

utilize a Kalman filter to track positions. Thus, the overlap

measured by MOTP is a matter of weighting reactivity and

smooth tracking, with SORT20 having higher priority for

precision here.

GMPHD_Rd20 applies a fast CNN called IdNet to include

appearance features. However, caused by the design where

training differs from inference, this leads to inferior results.

IV. CONCLUSION AND OUTLOOK

In this paper, we present a novel approach for real-time

capable multi-object tracking in a surveillance scenario. It

is based on the basic idea of associating given detections

with tracks. For this, we use the Hungarian algorithm,

which minimizes a cost matrix with fingerprints provided by

LTSiam in linear time. In addition, a human motion model

is added to improve the results. The evaluation shows that

this outperforms other real-time capable approaches.

In future research, utilizing fingerprints could help to

distinguish between different reasons for the disappearance

of a person. To be precise, case 3 in Sec. II-A.2 could be

identified by comparing the fingerprint of the patch at the

current tracking position with the last patch where the person

is known to be visible. However, as the current tracking

position is required and vice versa, the fingerprint must be

inferred in each frame. Further research is required to avoid

the additional overhead.

motchallenge.net/results/MOT20


REFERENCES

[1] Nathanael L. Baisa. Occlusion-robust online multi-object visual
tracking using a gm-phd filter with cnn-based re-identification. 2020.
arXiv: 1912.05949.

[2] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. Tracking
without bells and whistles, 2019. arXiv: 1903.05625.

[3] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben
Upcroft. Simple online and realtime tracking. In 2016 IEEE

international conference on image processing (ICIP), pages 3464–
3468. IEEE, 2016.

[4] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S.
Roth, K. Schindler, and L. Leal-Taixé. Mot20: A benchmark for multi
object tracking in crowded scenes. Mar. 2020. arXiv: 2003.09003.

[5] Shengyong Ding, Liang Lin, Guangrun Wang, and Hongyang Chao.
Deep feature learning with relative distance comparison for person
re-identification. Pattern Recognition, 48(10):2993–3003, 2015.

[6] Shyamgopal Karthik, Ameya Prabhu, and Vineet Gandhi. Simple
unsupervised multi-object tracking, 2020. arXiv: 2006.02609.

[7] Jonathon Luiten, Aljossa Ossep, Patrick Dendorfer, Philip Torr, An-
dreas Geiger, Laura Leal-Taixe, and Bastian Leibe. Hota: A higher
order metric for evaluating multi-object tracking. International Journal

of Computer Vision, 129(2):548–578, Oct 2020.
[8] Ioannis Papakis, Abhijit Sarkar, and Anuj Karpatne. Gcnnmatch:

Graph convolutional neural networks for multi-object tracking via
sinkhorn normalization, 2021.

[9] Roman Pflugfelder. An in-depth analysis of visual tracking with
siamese neural networks. arXiv preprint arXiv:1707.00569, 2017.

[10] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster
r-cnn: Towards real-time object detection with region proposal net-
works. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett, editors, NIPS, pages 91–99, 2015.

[11] Rahul Rama Varior, Mrinal Haloi, and Gang Wang. Gated siamese
convolutional neural network architecture for human re-identification.
In European conference on computer vision, pages 791–808. Springer,
2016.

[12] Yihong Xu, Yutong Ban, Guillaume Delorme, Chuang Gan, Daniela
Rus, and Xavier Alameda-Pineda. Transcenter: Transformers with
dense queries for multiple-object tracking, 2021. arXiv: 2103.15145.


