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Abstract— Safe and effective planning in cluttered and di-
verse scenes that include the presence of other agents, requires
a robot that is (1) equipped with a state-of-the-art autonomy
stack and (2) offers strict guarantees on its failure rate.
We expand upon prior work in planning with probabilistic
safety guarantees using conformal prediction, a distribution-
free uncertainty quantification technique. Specifically, to have
high performance and provide guarantees for long horizon
planning, we use copulas to model the temporal correlations
of an agent’s uncertainty along a trajectory. Additionally, we
highlight the versatility of conformal prediction and its potential
for safe planning and control. Our proposed algorithm improves
task performance (average distance to target) by 40% compared
to current methods, while retaining strict safety guarantees.

I. INTRODUCTION

Deploying autonomus systems in dense, unstructured, and
uncertain environments requires systematic reasoning of un-
certainty [1]. Recent advances in robotics & machine learn-
ing have enabled the deployment of autonomous systems
in a variety of domains, from automating warehouses to
space exploration. However, these domains are intentionally
very structured and devoid of humans. In contrast, many
promising future application domains for autonomous sys-
tems, ranging from last-mile ground and aerial deliveries
to autonomous driving in cities, involve environments with
much more complexity and uncertainty.

In this work, we explore planning algorithms that are
robust to uncertainty arising from both the environment
dynamics and from upstream models in the autonomy stack.
Specifically, we utilize Conformal Prediction [2], [3], a
distribution-free uncertainty quantification (UQ) method that
(1) makes no assumptions about the prediction model or the
underlying data distribution, and (2) provides finite-sample
statistical guarantees. Existing UQ methods, in contrast, do
not provide statistical guarantees, or produce error bounds
that are too conservative to be useful, which prohibits their
use in safety-critical applications. By incorporating provably
valid UQ methods for trajectory prediction, we develop prob-
abilistically safe, yet not overly conservative, long-horizon
motion plans in cluttered multi-agent environments.

A. Related Work
Historically, the control under uncertainty literature as-

sumes that uncertainties are either (1) bounded, or (2)
modeled by common distributions, e.g. Gaussian. The former
case leads to robust control techniques that assume worst-
case uncertainty [4], whereas the latter is typically paired
with chance-constraint optimal control [5]. Both of these
assumptions are typically invalid and/or overly conservative
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in dynamic and cluttered environments. Existing works on
probabilistically safe planning commonly use Gaussian pro-
cesses [6] or consider uncertainty in a model’s parameters
using a Bayesian framework [5]–[8]. In realistic settings, the
parameters of the distributions are approximately fit to the
data and the model which jointly quantify the uncertainty
(over e.g., the environment, the system’s dynamics, or the
system’s state). Hence, its safety guarantees hinge on strong
assumptions on the underlying data distribution.

In contrast, the properties of conformal prediction (CP)
makes it a particularly useful technique for safety assurance.
These properties notably include (1) being agnostic to the
underlying (prediction) model, (2) being agnostic to the
underlying data distribution, and (3) providing finite sample
guarantees. Additionally, it can calibrate heuristic uncertainty
metrics provided by the prediction model for better calibrated
UQ of models. The robotics community has started exploring
conformal prediction, to bound tracking errors [9], for vision-
based robot control [10], and for robust optimization [11].

In the context of safe planning and control, Muthali et.
al. [12] use CP-calibrated quantile regression to provide
probabilistically safe control actions leveraging reachability
analysis [13]. Closer to our work, Lindemann et. al. [14]
use CP to generate prediction sets of agents moving in an
environment, and then use these sets for planning with model
predictive control (MPC). However, planning over long time
horizons with probabilistic safety requires providing a cov-
erage guarantee over all future timesteps. Distribution-free
methods, including [14], often resort to union bounding [15]
which leads to very conservative prediction regions. Re-
cently, tighter bounds have been obtained leveraging Cop-
ulas [16] and linear complementarity programming [17].

B. Contributions
We propose a planning framework with valid probabilistic

safety assurances. We leverage tools from conformal pre-
diction to obtain valid prediction regions that quantify the
uncertainty of trajectory predictions over multiple timesteps.
Notably, we account for the temporal correlations by con-
sidering the timesteps jointly using copulas. We provide
extensive experiments that demonstrate that accounting for
temporal correlations leads to much tighter, yet valid, un-
certainty estimates, enabling less-conservative long-horizon
planning.

II. METHODS

A. Problem Setup
LetD = {zi = (xi, yi)}ni=1 be a dataset with input xi ∈ X

and output yi ∈ Y such that each data point zi ∈ Z := X×Y
is drawn i.i.d. from an unkonwn distribution Z .
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Specifically, for time series we consider zi = (xi
1:m, yi1:k),

where xi
1:m ∈ Rm×dx is m input time steps of dimension dx,

and yi1:k ∈ Rt×dy is k prediction time steps of dimension dy .
Commonly in time series forecasting x and y describe the
same variable and given the previous m states we predict the
k future states. We will use superscript xi to index samples
of D, and subscript xt to index time steps.

We consider an ego-agent with discrete-time dynamics of
the form st+1 = f(st, at) with st ∈ Rns the state and
at ∈ Rna the action (or control). We define the observation
variables ot = g(st) ∈ Rdy to be in the observation space
(which describes the same quantity as the model output
space) and g a mapping from the state space to observation
space. For example, in autonomous navigation, the subset
of the state describing the 2D position corresponds to the
observation variables (with g the position mask). We are
interested in planning under constraints and hence define
a time-varying obstacle region Oobs

t . Then, given a desired
confidence level 1−ϵ, a sequence of observations o ∈ RN×dy

is 1− ϵ probabilistically safe if

P

(
N∧
t=1

ot /∈ Oobs
t

)
≥ 1− ϵ, (1)

with N the problem duration. Note that this probability has
to hold jointly over all time steps to be valid.

B. Conformal Prediction

We will briefly present the algorithm and theoretical
results for conformal prediction, and refer readers to [18] for
a thorough introduction. The goal of conformal prediction
is to produce a valid confidence region (Def. 1) for any
underlying prediction model.

Definition 1 (Validity). Given a new data point (x, y) and
a desired confidence 1 − ϵ ∈ (0, 1), the confidence region
Γ1−ϵ(x) is a subset of Y containing probable outputs ỹ ∈ Y
given x. The region Γ1−ϵ is valid if

P(y ∈ Γ1−ϵ(x)) ≥ 1− ϵ (2)

We begin the algorithm by splitting the dataset into a
proper training set Dtrain, a calibration set Dcal, and a test
set Dtest. A prediction model h : X → Ỹ is trained on
Dtrain. Note that the prediction space Ỹ can be the same
as the output space Y , or can contain auxiliary information,
such as a heuristic measure of uncertainty.

Next, we pick a nonconformity score R : Z |Dtrain| ×
Z → R that quantifies how well a data sample from
calibration conforms to the training dataset. Typically, we
leverage the prediction model h(x) and choose a metric of
disagreement between the prediction and the true label as the
non-conformity score, such as the Euclidean distance.

R(Dtrain, (x, y))
e.g.
= d(y, h(x))

e.g.
= ∥y − h(x)∥2

For consiseness, we write R(Dtrain, (x
i, yi)) as R(zi) in

rest of the paper. Let Rcal denote the set of nonconformity
scores of all data in Dcal.

Given a new test data sample z′ = (x′, y′) and a target
confidence level 1 − ϵ ∈ (0, 1), conformal prediction con-
structs the confidence regions as follows:

Γ1−ϵ(x′) := {y : d(h(x′), y) ≤ Q(1− ϵ,Rcal ∪{∞})} (3)

with Q(p,R) is the quantile function that finds the p-quantile
in a set of scalars R. We call a data point covered when the
confidence region contains the true label: yi ∈ Γ1−ϵ(xi).

The confidence region obtained above with conformal pre-
diction is provably valid if the data sample z is exchangeable
with Dcal [2]:

Definition 2 (Exchangeability). In a dataset {z1, z2, . . . , zn}
of size n, any of its n! permutations are equally probable.

Importantly, this statistical guarantee holds regardless of
the underlying prediction model and choice of nonconformity
score.

The algorithm introduced above is known as inductive or
split conformal prediction [2], [19]; it is commonly used for
uncertainty quantification for machine learning models [18],
because of its flexibility and computational efficiency.

C. Copula Conformal Prediction for multistep time series

To leverage CP for multi-step safe planning, a coverage
guarantee over all future time steps is desired. Formally,
for a prediction horizon of length k, we want to produce
k confidence regions Γ1−ϵt

t (x) for t = 1, . . . , k such that

P[ yt ∈ Γ1−ϵt
t (x) ∀t ∈ {1, . . . , k}] ≥ 1− ϵ. (4)

Note that ϵt ̸= ϵ. However, we can naively apply Boole’s
inequality and obtain ϵt = ϵ/k ∀t. This is referred to as
union bounding [15], in which finding the 1−ϵ/k confidence
region for each time step ensures the joint coverage rate over
k future predictions to be greater than 1 − ϵ. The resulting
union bound is a worst-case bound that assumes the residuals
of each time step of a trajectory to be independent, which is
rarely the case. Consequently, this approach results in very
large confidence regions, especially for long prediction hori-
zons (large k) or for multivariate data (e.g. 2D coordinates),
which poses challenges for downstream planning.

We propose mitigating this challenge by incorporating
copulas [16]. A copula (Def. 3) is a function that combines
marginal probabilities of multiple random variables into a
joint cumulative distribution function (CDF).

Definition 3 (Copula). Consider a random vector
(X1, . . . Xk). We denote the marginal CDF for each
variable Xt, t ∈ {1, . . . , k} as

Ft(x) = P[Xt ≤ x]

The copula of (X1, . . . Xk), written as C : [0, 1]k → [0, 1],
is defined as the joint CDF of (F1(X1), . . . , Fk(Xk)):

C(u1, . . . , uk) = P [F1(X1) ≤ u1, . . . , Ft(Xk) ≤ uk]

The copula function C captures the correlation between
distributions of the variables X1, . . . , Xk. Sklar’s theo-
rem [16, Theorem 1] proves the existence of a copula
function for any arbitrary collection of variables.



We will outline our algorithm for estimating the copula
and generating valid confidence regions for the entire tra-
jectory. We divide Dcal further into equal-sized Dcal,1 and
Dcal,2. For each time step t = 1, . . . , k, we first estimate an
empirical CDF on the nonconformity scores:

F̂t(r) = Pz∈Dcal,1
[R(z) ≤ r] =

∑
zi
t∈Dcal,1

1R(zi
t)≤r

|Dcal,1|
(5)

With the empirical CDFs, we can calculate the marginal
probability vectors ui = (F̂1(R(zi1)), . . . , F̂t(R(zik))) ∈
[0, 1]k for all zi ∈ Dcal,2. To model the joint probability,
we estimate an empirical copula [20] as follows:

Cempirical(u1, . . . , ut) =
1

|Dcal,2|
∑

zi
t∈Dcal,2

k∏
t=1

1ui
t<ut

. (6)

Lastly, we can use a search algorithm to find

argmin
r1,...,rk

Cempirical(F̂1(r1), . . . , F̂1(rk)) ≥ 1− ϵ. (7)

The thresholds r1, . . . , rk are then used to generate confi-
dence sets for planning. We refer readers to [16] for details
on the copula CP algorithm and proof of its validity. By
estimating a copula, we leverage the correlation between the
time steps to produce sharper confidence regions that still
guarantees coverage over the full prediction horizon.

D. Planning
To highlight the performance of our approach, we consider

long-horizon open-loop planning tasks. We assume we have
access to a prediction model that at minimum provides a
point-estimate of future agent trajectories in a scene over
the full horizon. In practice, it is common to leverage
past trajectories (which we assume we have observed) to
predict future trajectories. A popular approach that provides
safety assurances is trajectory optimization, which casts the
task as an optimal control problem (OCP). Critically, for
autonomy applications, we require algorithms that guarantee
satisfaction of all constraints over an entire trajectory with
high probability. To provide probabilistic safety assurances,
a popular approach uses chance constraints, and requires
solving a chance-constrained OCP [21], which are typically
much harder to solve than deterministic OCPs. However,
using conformal prediction enables transforming a chance-
constrained OCP into a deterministic OCP by planning a
robust path with respect to the CP-generated confidence sets.
Specifically, based on the model prediction (which includes
the predicted trajectory and optionally a heuristic uncertainty
metric) we compute the Γϵ

t confidence set for each agent over
all time steps t and include a constraint to avoid intersection
with the confidence sets. In particular, we solve the following
optimization problem:

min.
s1:N+1,a1:N

J(s1:N+1, a1:N ),

s.t. st+1 = f(st, at) t ∈ {1, . . . , N}, (8)
s1 = sinit, sN+1 ∈ Sfinal,

at ∈ A, st ∈ S, g(st) /∈ Oobs
t t ∈ {1, . . . , N},

with J(s1:N+1, a1:N ) the objective of the ego agent, A the
action constraints, and S the state constraints. sinit denotes

the starting state and Sfinal denotes the desired final state
region. Our complete pipeline is outline in Algorithm 1.

Algorithm 1 Safe Planning with Copula CP UQ

Input: Dataset D = {zi}ni=1, target significant level 1 − ϵ,
Test sample x1:m ∼ Dtest, initial state sinit, Sfinal

// Copula Conformal Prediction
1: Split dataset D into Dtrain, Dcal,1, and Dcal,2.
2: Train prediction model h on Dtrain.
3: F̂1, . . . , F̂k ← Eq. (5)
4: Cempirical(·)← Eq. (6)
5: r1, . . . , rk ← Eq. (7)

// Planning with Confidence Sets
6: ỹ1:k ← h(x1:m)
7: for t = {1, . . . N} do
8: Oobs

t ← {y : d(y, ỹt) ≤ rt}
9: end for

10: a1, . . . , aN ← Eq. (8)
11: Apply a1, . . . aN to ego-agent

III. EXPERIMENTS

For our experiments we use the TrajNet++ dataset (Update
4.0) [22], which is a compiled set of pedestrian trajectories
captured in both indoor and outdoor locations such as in
universities, hotels, retail stores, and train stations. The
samples are 21 time steps long with a data frequency of
2.5Hz. Our algorithm predicts 2D spatial positions for each
pedestrian over the last k = 12 time steps given the first
m = 9. The dataset contains 240, 896 samples, which we
split 70/10/20 into train, calibration, and test sets.

In this work, we do not model interactions between the
ego-agent and other agents, and hence implicitly assume
that the ego-agent’s motion will not affect the pedestrian’s
movement. This is a standard assumption considered in prior
work [12], [14]. We leave joint modeling of human-robot
motion to future work.

We consider the following baseline comparisons: (1) Cer-
tainty equivalence (CE), in which we only leverage the mean
point prediction and do not account for uncertainty, (2) the
probabilistic output of the SocialLSTM [23] model, which
provides a multi-variate Gaussian (for which we take the
1−ϵh confidence sets), and (3) union bounding CP as in [14].

A. Results

To quantitatively compare different UQ methods, we com-
pute the empirical coverage over the entire prediction horizon
(see Eq. 4) and the size of the confidence area predicted
summed over a trajectory. These metrics correspond to
validity and sharpness respectively. The results are shown
in Table I. By leveraging the temporal correlations over a
trajectory we see that our method (CopulaCP) provides a
sharper UQ estimate (50% lower area) than union bounding
CP while maintaining validity. Additionally, we observe that
the uncertainty obtained from the multi-variate Gaussian
estimate of the SocialLSTM model is overly confident, pro-
ducing small regions that do not provide adequate coverage.
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(c) Planning with Copula CP UEs.

Fig. 1: A scene with uncertainty bounds for the other agents in red, the actual position of other agents and their trajectory in dark gray, the ego agent’s
position and its trajectory in blue and the goal region in green. We observe the CE baseline crashing, the union bounding CP unable to reach the goal due
to conservative uncertainty estimates (UEs), and the copula CP method reaching the goal successfully.

TABLE I: Comparison of Uncertainty Quantification methods. Methods
that are invalid (coverage below 90%) are greyed out. Compared to baseline
methods, CopulaCP achieves high level of calibration (coverage is close to
90%) while producing sharper confidence regions.

Model SocialLSTM CP CopulaCP
Coverage [%] (90%) 2.86 98.4 92.6

Sum of Area [m2] (↓) 21.5 403.8 204.2

TABLE II: Collision rate and mean distance to the goal over 1000 test
trajectories with 5 agents per scene. We empirically observe that CE and
the SocialLSTM planners do not provide probabilistic safety, while CP
and CopulaCP do. Additionally, our proposed approach improves planning
performance by 40%.

Model CE SocialLSTM CP CopulaCP
Collision rate [%] 37.7 30.0 0.8 1.1

Distance to goal at t = N [m] 0.6 0.6 9.5 5.8

Next, we utilize the uncertainty estimates to quantify the
obstacle sets Oobs. We compare CopulaCP to the afore-
mentioned baselines when they are used for safe planning
with time-varying obstacles. We consider the collision rate
(between the ego agent and the actual future agent tra-
jectories y ∼ Dtest) and the distance to the goal region
Sfinal as evaluation metrics, see Table II. As expected, the
CE approach and the SocialLSTM baselines do not provide
probabilistic safety assurances (higher than 10% collision
rate). We visualize the open-loop planning solution for all
4 methods for a descriptive test scene and the uncertainty
bounds in Figure 1. We observe that the CE baseline collides,
that the uncertainty estimates are too large using union
bounding CP and that only CopulaCP reaches the goal safely.

B. Discussion
The usefulness of the prediction sets obtained with con-

formal prediction is strongly reliant on leveraging problem
structure and model characteristics. In this work, we tackle
the former by modeling the temporal correlations over the
length of a trajectory prediction. Beyond this, obtaining
sharp uncertainty estimates is driven by the choice of non-
conformity score, as it aims to encode all information about
the problem and the data [18].

One popular technique uses quantile regression, as in
e.g., [12], but this requires pre-specifying the quantile to

regress to and incorporating quantile loss in the loss function
for the prediction module, which makes it less amenable to
using large pre-trained models. Instead, a popular choice
is to design the non-conformity score to incorporate an
uncertainty metric from the model directly (or through an
ensemble of models). For example, if the model outputs a
heatmap over the possible output values, one can choose the
nonconformity score to be the peak probability of the model
output multiplied by the estimation error [24]. Alternatively,
a popular choice is a measure of entropy, such as the
(generalized) variance over an ensemble of models or the
predicted variance of a Bayesian model.

As previously discussed, the majority of state-of-the art
trajectory prediction models predict a distribution of potential
future trajectories [25], e.g., a multi-variate Gaussian or
mixture of Gaussians (GMM). The distributions usually
overfit dramatically due to the nature of model training (see
[26], [27], and as demonstrated in Table I), hence are unfit
to be used as UQ directly. However, they can be used as
heuristics to improve distribution free calibration methods
such as CP. We foresee that, e.g., decoupling longitudinal
and lateral movement and uncertainty estimates can greatly
improve the UQ predictions to provide tighter, yet still valid
bounds. In turn, this reduces the conservativeness of the
downstream planning model that leverages the CPs.

C. Future work
We plan on leveraging better trajectory prediction models

that provide richer notions of uncertainty, such as Trajec-
tron++ [25]. Additionally, we plan to model the spatial cor-
relations and interaction between agents to provide sharper
UQ estimates. To scale to more complex tasks, we plan on
using receding horizon planning approaches as an uncertainty
reduction tool. To ensure successive iterations of the planner
and solvable and safe, i.e. persistent feasibility, we will
rely on a library of fallback strategies for the ego agent.
Additionally, quantifying the effect of future ego-actions on
other agents and the environment is a key enabler for scaling
to more complex tasks.
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[15] K. Stankevičiūtė, A. Alaa, and M. van der Schaar, “Conformal time-
series forecasting,” in Advances in Neural Information Processing
Systems, 2021.

[16] S. Sun and R. Yu, “Copula conformal prediction for multi-step time
series forecasting,” arXiv preprint arXiv:2212.03281, 2022.

[17] M. Cleaveland, I. Lee, G. J. Pappas, and L. Lindemann. (2023) Con-
formal prediction regions for time series using linear complementarity
programming. Available at https://arxiv.org/abs/2304.01075.

[18] A. N. Angelopoulos and S. Bates, “A gentle introduction to confor-
mal prediction and distribution-free uncertainty quantification,” arXiv
preprint arXiv:2107.07511, 2021.

[19] J. Lei and L. Wasserman, “Distribution free prediction bands,” arXiv
preprint arXiv:1203.5422, 2012.

[20] L. Ruschendorf, “Asymptotic distributions of multivariate rank order
statistics,” The Annals of Statistics, pp. 912–923, 1976.

[21] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained
optimal path planning with obstacles,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1080–1094, 2011.

[22] P. Kothari, S. Kreiss, and A. Alahi, “Human trajectory forecasting in
crowds: A deep learning perspective,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 23, no. 7, pp. 7386–7400, 2021.

[23] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 961–971.

[24] H. Yang and M. Pavone, “Object pose estimation with statistical
guarantees: Conformal keypoint detection and geometric uncertainty
propagation,” arXiv preprint arXiv:2303.12246, 2023.

[25] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Dynamically-feasible trajectory forecasting with heteroge-
neous data,” in European Conf. on Computer Vision, 2020.

[26] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensembles,”
Advances in neural information processing systems, vol. 30, 2017.

[27] A. Alaa and M. van der Schaar, “Frequentist uncertainty in recurrent
neural networks via blockwise influence functions,” in ICML, 2020.

https://arxiv.org/abs/2304.01075

	Introduction
	Related Work
	Contributions

	Methods
	Problem Setup
	Conformal Prediction
	Copula Conformal Prediction for multistep time series
	Planning

	Experiments
	Results
	Discussion
	Future work

	References

