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Abstract—Autonomous robots have the biggest potential for
risk because they operate in open-ended environments where hu-
mans interact in complex, diverse ways. To operate, such systems
must predict this behaviour, especially it’s part of the unexpected
and potentially dangerous long tail of the dataset. Since previous
work on long-tailed prediction is limited, and uses variably de-
fined long-tailed metrics, we aim to unify the different long-tailed
trajectory prediction approaches by comparing them on the same
long-tailed metrics and test a new long-tailed learning technique
previously not yet applied to trajectory prediction. Furthermore,
in order to more fairly compare methods, we advocate for metrics
which value multimodal predictions while penalizing random
guessing, which is not something that the popular ’best-of-20’
metric accomplishes. To our knowledge, we are the first work to
compare long-tailed trajectory prediction techniques on metrics
which are more practical to autonomous robots, and one of the
first to apply long-tailed learning techniques to methods which
assign likelihoods to predictions, a feature that is essential for
using these predictions in a practical way within autonomous
systems.

Index Terms—long-tailed learning, trajectory prediction

I. INTRODUCTION

Most previous studies of long-tailed learning within pre-
diction demonstrate their results by showing an improvement
on the Trajectron++EWTA model [1]. However, this model
outputs an unranked set of N (typically, 20) future trajectories
without ranking them by likelihood. Such models are difficult
to use in practice because applications such as autonomous
robots will need to plan a course of action for each trajectory
that is predicted. Therefore, we propose to evaluate how well
these long-tailed learning techniques developed for trajectory
prediction perform on methods like Trajectron++ [2], which
yield a distribution of possible future trajectories with a like-
lihood attached to each one. Such methods allow applications
to plan for only the most likely futures and are therefore more
useful in practice.

’Best-of-20’ Metric. Since one history sequence could yield
multiple plausible paths (e.g. person approaching an obstacle
can go around on the right or left without giving prior
indication) such that the ground truth represents only one out
of many potentially likely paths, many methods evaluate their
models using the multimodal evaluation metrics ’Best-of-N’
or ’top-N’, where the N (typically, 20) most likely paths are

predicted, and the path which is closest to the ground truth is
compared to the ground truth to calculate errors [3].

’Most Likely’ Metric compares the average distance error
(ADE) and final distance error (FDE) between the ground truth
path and the single most likely prediction output by the model.

Long-Tailed Learning. We use the term long-tailed to de-
scribe most naturally sampled datasets that contain many
examples of a few common cases and few examples of many
uncommon cases. The uncommon examples in the long tail
are harder to predict, as they are rare and dispersed among
the many majority cases. Within prediction, there are many
examples of easily predictable behaviors like standing still
or traveling at a constant velocity, and few examples of
complicated behaviors like stopping to tie a shoelace, which
makes them harder to identify and predict.

In this work, we 1) unify different long-tailed learning
approaches within trajectory prediction which were done in
parallel and evaluated on separately defined long-tail metrics,
and 2) evaluate whether the good results that these approaches
achieve (when applied to models which use EWTA loss [1]
with ’Best-of-20’ metrics) can be replicated with models
which attach likelihoods to their predictions (like Trajectron++
[2]) on the ’Most Likely’ metric.

II. RELATED WORK.
A. Long-Tailed Learning in Trajectory Prediction

Within trajectory prediction, [1], [5], and [7] are the only
methods, to our knowledge, which directly address long-tailed
learning. [1]and [7] use contrastive loss on implicit classes
of trajectories to force the model to learn the characteristics
of rare trajectories separately from common trajectories. This
loss forces the feature embeddings of the rare trajectories
away from that of common trajectories [1]. Therefore, feature
embeddings of rare trajectories are less likely to be lost within
the manifold of common trajectories, and assumed to be
outliers. In [1], classes are defined by how easy it is to
predict the future trajectory through a physics-based Kalman
filter: rare and important trajectories are assumed to be the
ones which are difficult to predict using simple kinematics. In
[7], unsupervised clustering is performed via an autoencoder to
assign examples to pseudo-classes, and class frequency is used
to separate common from rare classes. [7] additionally employ



Fig. 1. Architecture of Baseline Model and Application of 3 Long-Tailed Learning Techniques (i.e. Contrastive Loss [1], Balanced MSE Loss [4], and PLM
Loss [5]). Contrastive loss pushes the embeddings of nodes in the same class (i.e. similar ’difficulty’ level) together, and those of different classes apart, as
shown (where τ is a pre-defined hyperparameter and poi is the positive set of anchor i, i.e. the set of samples j in the batch which has a difficulty score sj
satisfying |si − sj | < θp, where θp is a hyper-parameter defining the positivity threshold). Balanced MSE loss pulls predictions towards their ground truth
and away from the ground truths of other examples in the batch, because of the assumption that the training set is imbalanced, while the test set is balanced
across the output space (as shown in the equation, where τ is a hyperparameter learned during training and By is the labels of a batch). PLM loss takes
the initially calculated per-example loss, l̂, and uses the assumption that the long tail is shaped like a pareto curve to transform it according to the equation
shown (where ξ and η are pre-defined hyperparameters). The diagrams of the baseline model architecture are based on [2], while pictures and equations of
the contrastive, balanced MSE, and PLM losses are taken from [1], [4], and [5] respectively. The diagram for contrastive loss is from [6].

Hypernetworks to learn different weights for common and
uncommon examples. Meanwhile, [5] propose novel losses,
of which the best performing is a regularization term which
assumes a fixed shape (pareto distribution) for the error. While
[1], [5], and [7] show small improvements in averaged
metrics, it is difficult to compare improvements in the long
tail as each paper defines and optimizes for their own scale
of uncommonness. Therefore, we implement [1] and [5] on
the Trajectron++ model [2] (since [7] came out too recently
without code, it was difficult to implement quickly) and com-
pare their performances on both scales of uncommonness. One
caveat: while [7] evaluate their method on the Trajectron++
model, and report improved NLL metrics, they do not compare
theirs to other methods on this model/metric.

B. Long-Tailed Learning in Regression

Outside of prediction, there are few works on multi-
dimensional regression that incorporate different long-tailed
learning techniques (e.g. [4], [8]), but the most applicable to
trajectory prediction is balanced MSE [4]. [4] operates on
the assumption that the test set is balanced across the output
trajectory space, even if the training set is imbalanced and/or
long-tailed. We use balanced MSE [4] as an additional loss
term and compare performance to that of other methods.

C. Metrics.

Most methods that use the ETH-UCY dataset, to our knowl-
edge, use the best-of-20 metric but this allows high scores
to be achieved by ’shot gun’ predictions (i.e. evenly spread
uninformed guesses) [9], and isn’t a useful indication of
how well these methods will perform in applications where
each possible future needs to be planned for. Therefore, more
useful metrics which still promote multimodality include:
Negative Log-Likelihood over the predicted distribution of
future trajectories [9], and using a subset of most likely modes
instead of ’best’ mode [10]. However, such metrics require
models that assign likelihoods to each predicted trajectory,
which Trajectron++EWTA [1] doesn’t do. [3] propose using
’best-of-3’ instead of 20 for such methods which can’t assign
likelihoods, but this is not used in the long-tailed learning
prediction literature.

III. METHODOLOGY

In order to unify the different long-tail learning techniques
applicable to trajectory prediction, as well as test their per-
formances on a model capable of producing trajectories with
likelihoods, we implemented each of these techniques on
Trajectron++ [2] baseline model, and evaluated both the most
likely and best-of-20 (previously reported metric) scores of
each method on both the long-tail metrics defined by [1] and
[5].



The long-tailed learning techniques within trajectory pre-
diction that we evaluated are: 1) Contrastive Loss proposed
by [1], 2) PLM Loss, the best of the long-tailed learning
techniques proposed by [5], and 3) balanced MSE loss
proposed by [4], which was developed for regression tasks but
has not yet been applied to trajectory prediction. A diagram
summarizing these three additional losses and how they were
incorporated into the architecture of the baseline model is
shown in Figure 1.

A. Implementation of Models

The baseline model we use to compare long-tailed learning
methods is Trajectron++ [2], as it produces a distribution
of future trajectories and their likelihoods, which is useful in
planning applications. In contrast, past long-tailed trajectory
prediction methods ( [1] and [5]) have used the Trajec-
tron++EWTA model [1] as a baseline since its ’Best-of-20’
ADE/FDE metrics show better performance than Trajectron++
[2]. However, this comes at a cost: the EWTA (Evolving
Winner-Takes-All) loss always predicts N (in this case, 20)
future trajectories without any associated likelihoods, and
specifically optimizes for the ’Best-of-20’ metric by ’evolving’
the training scheme such that in the beginning, loss is averaged
across all 20 trajectories, but by the end of the training, loss
is only optimized for the single trajectory that is closest to the
ground truth [11].

To train our baseline model, we maintain the same training
methodology and parameters as [2]. The metrics reported in
this work are those achieved by our retrained iteration of [2],
and are consistent with the metrics reported in [2].

Contrastive Loss. We implemented the Contrastive loss
proposed by [1] by taking the vector u, shown in Figure
1, and using it as the contrasted feature embedding. All other
parameters of the contrastive loss were taken from the default
values in [1]. We combined this loss with the baseline loss in
ratios of 1:1 and 1:10 (original : contrastive loss, respectively),
and used a batch-size of 256.

PLM Loss. We use the PLM loss [5], by applying the
function shown in Figure 1 to the individual loss of each
example, and adding their average to the baseline loss in
varying degrees, as shown in Table I. A ratio of p indicates
that the loss is p% PLM loss and (1 - p)% baseline loss. After
a hyper parameter search, we found best results using η = 100
and an ξ = 0.01. We also multiplied the PLM loss by 100 to
make it the same order of magnitude as the baseline loss.

Balanced MSE Loss. We use the Batch-based Monte
Carlo implementation of the re-balancing loss proposed by
[4] which uses cross-entropy to pull each example closer to
its ground truth and further from the ground truth of other
examples in the batch. Ratios are calculated in the same way
as PLM loss. Although the assumption by [4] that the test
set is balanced, does not fully apply, using this assumption
forces the model to treat the rare examples as if they are just
as common as the most frequently seen examples.

Fig. 2. Representative instance of examples within the worst performing 1%
of the dataset on the baseline model. As can be seen, even in cases which
fall into the worst performing 1% on the baseline model, adding each of the
three losses doesn’t make much difference.

IV. RESULTS AND CONCLUSIONS

As can be seen by the results in Table I, some of the
methods improve the errors slightly on some datasets, but no
method achieves significantly better results than the baseline.

To unify the results of [1] and [5] we have evaluated
all three long-tailed learning methods on both the long-tailed
metric proposed by [1] (shown in Table II) and the long-
tailed metric proposed by [5] (shown in Table III). While
[1] uses their ’difficulty scoring’ to get the ADE/FDE of the
most difficult 1, 2, and 3 percent of examples, [5] calculates
the 95th, 98th, and 99th percentile of the distribution of errors
to measure long-tail performance. Both of these methods,
however, only calculate these long-tailed metrics on the Best-
of-20 prediction. Therefore, we additionally calculate both
long-tailed trajectory prediction metrics on the most likely
single trajectory predictions.

From Tables II and III, it can be seen that the two long-
tail metrics are consistent: the best performing methods on
the 99th and 98th percentile Most Likely metrics are the
same methods which perform best on the Top 1 and Top
2 Most Likely prediction metrics, respectively. However, the
Most Likely metrics and Best-of-20 metrics are not correlated:
methods which perform the best on each of the two metrics
for a specific dataset do not correspond, shown in Table I.

Moreover, all 3 methods perform fairly similarly to the
baseline on all the metrics presented, as shown in Figure 2.
This may be because all of these methods are re-balancing
methods [12], a type of long-tailed learning technique which
uses the loss to force the model to treat all examples equally.
Although class re-balancing methods are generally simple to
implement and show minor performance improvements, they
essentially can’t handle the issue of lacking information due to
limited data so improving tail performance typically involves
the trade-off of also regressing head performance to some
extent [12]. Furthermore, the heuristic division of the dataset
into rare and frequent sets causes a tendency to classify outliers
as important, rare examples [13].



TABLE I
PER-DATASET PERFORMANCE ACROSS TEST SET FOR MOST LIKELY AND BEST-OF-20 PREDICTIONS

Most Likely Best-of-20

Method Ratio ETH HOTEL UNIV ZARA1 ZARA2 ETH HOTEL UNIV ZARA1 ZARA2
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Baseline 100% 0.70 1.68 0.22 0.46 0.41 1.06 0.30 0.77 0.22 0.57 0.42 0.85 0.12 0.20 0.22 0.43 0.17 0.31 0.12 0.24
B-MSE 25% 0.71 1.69 0.22 0.47 0.40 1.04 0.29 0.76 0.22 0.57 0.43 0.89 0.12 0.19 0.21 0.42 0.17 0.31 0.12 0.24
B-MSE 50% 0.71 1.71 0.22 0.47 0.39 1.04 0.30 0.77 0.22 0.57 0.43 0.87 0.12 0.19 0.22 0.42 0.17 0.32 0.12 0.25
B-MSE 75% 0.71 1.70 0.22 0.47 0.39 1.01 0.29 0.75 0.22 0.57 0.42 0.85 0.12 0.19 0.22 0.42 0.16 0.31 0.12 0.25
Contr. 1:1 0.72 1.71 0.22 0.47 0.47 1.24 0.30 0.77 0.22 0.57 0.44 0.87 0.13 0.21 0.21 0.42 0.17 0.32 0.12 0.25
Contr. 10:1 0.70 1.67 0.22 0.47 0.42 1.15 0.29 0.76 0.22 0.57 0.41 0.79 0.13 0.22 0.21 0.42 0.16 0.32 0.12 0.25
PLM 25% 0.71 1.70 0.21 0.46 0.40 1.04 0.29 0.75 0.22 0.57 0.43 0.87 0.12 0.19 0.21 0.43 0.16 0.32 0.12 0.25
PLM 50% 0.70 1.67 0.21 0.46 0.39 1.01 0.29 0.76 0.22 0.57 0.43 0.87 0.12 0.19 0.21 0.42 0.17 0.32 0.12 0.25
PLM 75% 0.71 1.71 0.21 0.46 0.39 1.01 0.29 0.75 0.22 0.57 0.44 0.89 0.12 0.19 0.21 0.42 0.17 0.32 0.12 0.25
PLM 100% 0.71 1.71 0.21 0.45 0.38 0.99 0.30 0.77 0.22 0.57 0.43 0.88 0.12 0.19 0.22 0.42 0.17 0.32 0.12 0.25

TABLE II
MOST LIKELY (ML) AND BEST-OF-20 (BO) AVERAGE PERFORMANCE OF ALL, TOP 1%, 2%, AND 3% MOST ’DIFFICULT’ EXAMPLES AS DICTATED BY

[1], AVERAGED OVER THE 5 DATASETS (ETH, HOTEL, UNIV, ZARA1, ZARA2)

Method Ratio All (ML) Top 1 Top 2 Top 3 All (BO) Top 1 Top 2 Top 3

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Baseline 100% 0.37 0.91 1.02 2.31 1.02 2.39 0.97 2.29 0.21 0.41 0.53 1.04 0.56 1.14 0.54 1.12
Balanced MSE 25% 0.37 0.91 1.05 2.33 1.05 2.41 0.98 2.32 0.21 0.41 0.55 1.11 0.58 1.20 0.57 1.18
Balanced MSE 50% 0.37 0.91 1.04 2.37 1.05 2.45 0.98 2.34 0.21 0.41 0.49 0.97 0.55 1.10 0.55 1.12
Balanced MSE 75% 0.37 0.90 0.97 2.16 1.01 2.33 0.96 2.26 0.21 0.40 0.50 0.88 0.58 1.11 0.55 1.09

Contrastive 1:1 0.39 0.95 1.03 2.29 1.03 2.36 0.97 2.28 0.21 0.41 0.55 1.05 0.60 1.17 0.58 1.17
Contrastive 10:1 0.37 0.92 0.99 2.25 1.00 2.33 0.95 2.25 0.21 0.40 0.53 0.90 0.54 1.02 0.53 1.03

PLM 25% 0.37 0.90 1.05 2.37 1.04 2.42 0.98 2.32 0.21 0.41 0.50 0.94 0.56 1.16 0.55 1.17
PLM 50% 0.36 0.89 1.04 2.32 1.03 2.39 0.97 2.29 0.21 0.41 0.57 1.13 0.58 1.17 0.57 1.17
PLM 75% 0.36 0.90 1.04 2.35 1.03 2.40 0.97 2.31 0.21 0.41 0.51 0.98 0.57 1.17 0.57 1.22
PLM 100% 0.36 0.90 1.02 2.29 1.03 2.37 0.97 2.29 0.21 0.41 0.50 0.91 0.52 1.01 0.53 1.07

TABLE III
MOST LIKELY (ML) AND BEST-OF-20 (BO) MEAN, 95TH, 98TH, AND 99TH PERCENTILE OF ADE AND FDE (METRIC USED BY [5]), AVERAGED OVER

THE 5 DATASETS (ETH, HOTEL, UNIV, ZARA1, ZARA2)

Avg (ML) 95th 98th 99th Avg (BO) 95th 98th 99th

Method Ratio ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Baseline 100% 0.37 0.91 1.00 2.56 1.26 3.27 1.50 3.73 0.21 0.41 0.56 1.36 0.76 1.88 0.95 2.36
Balanced MSE 25% 0.37 0.91 1.00 2.56 1.27 3.26 1.49 3.73 0.21 0.41 0.57 1.40 0.79 2.01 0.96 2.38
Balanced MSE 50% 0.37 0.91 1.00 2.58 1.27 3.30 1.50 3.73 0.21 0.41 0.58 1.44 0.82 2.08 0.99 2.54
Balanced MSE 75% 0.37 0.90 1.00 2.52 1.27 3.24 1.46 3.73 0.21 0.40 0.56 1.34 0.79 2.00 0.94 2.37

Contrastive 1:1 0.39 0.95 1.01 2.61 1.26 3.30 1.49 3.74 0.21 0.41 0.57 1.38 0.82 2.00 0.99 2.44
Contrastive 10:1 0.37 0.92 0.98 2.54 1.27 3.24 1.46 3.70 0.21 0.40 0.55 1.27 0.79 1.98 0.99 2.41

PLM 25% 0.37 0.90 0.99 2.56 1.26 3.28 1.47 3.74 0.21 0.41 0.57 1.39 0.79 1.95 0.97 2.45
PLM 50% 0.36 0.89 0.99 2.53 1.24 3.26 1.49 3.71 0.21 0.41 0.57 1.40 0.80 1.98 0.98 2.46
PLM 75% 0.36 0.90 1.01 2.55 1.26 3.29 1.50 3.71 0.21 0.41 0.58 1.39 0.79 1.99 0.98 2.53
PLM 100% 0.36 0.90 1.00 2.57 1.27 3.29 1.49 3.74 0.21 0.41 0.58 1.41 0.82 2.08 0.99 2.52

V. FUTURE WORK

Therefore, our next aim is to use ensemble learning to train
a series of experts to recognize and perform well on certain
aspects of the dataset (i.e. one expert for similarly behaving
common examples, and multiple others for uncommon ex-
amples which behave in their own unique ways). Instead of
grouping all uncommon examples together, as [1] and [5] do,
this will allow the network to learn different types of behaviors
corresponding to the different reasons an example may fall
into the ’uncommon’ category. Furthermore, we intend to

incorporate map information and social interaction modeling
into our ensemble learning model to add information that will
help inform a classifier to distinguish between the possible
reasons an example may be performing exceptionally poorly.

REFERENCES

[1] O. Makansi, O. Cicek, Y. Marrakchi, and T. Brox, “On Exposing
the Challenging Long Tail in Future Prediction of Traffic Actors,”
arXiv:2103.12474 [cs], Aug. 2021.

[2] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajec-
tron++: Dynamically-Feasible Trajectory Forecasting With Heteroge-
neous Data,” arXiv:2001.03093 [cs], Jan. 2021.



[3] P. Kothari, S. Kreiss, and A. Alahi, “Human Trajectory Forecasting in
Crowds: A Deep Learning Perspective,” Jan. 2021.

[4] J. Ren, M. Zhang, C. Yu, and Z. Liu, “Balanced MSE for Imbalanced
Visual Regression,” arXiv:2203.16427 [cs], Mar. 2022.

[5] J. Kozerawski, M. Sharan, and R. Yu, “Taming the Long Tail of Deep
Probabilistic Forecasting,” arXiv:2202.13418 [cs], Mar. 2022.

[6] “Deep Metric Learning for Signature Verification,”
https://blog.fastforwardlabs.com/2021/06/09/deep-metric-learning-
for-signature-verification.html.

[7] Y. Wang, P. Zhang, L. Bai, and J. Xue, “FEND: A Future Enhanced
Distribution-Aware Contrastive Learning Framework for Long-tail Tra-
jectory Prediction,” Mar. 2023.

[8] Y. Yang, K. Zha, Y. Chen, H. Wang, and D. Katabi, “Delving into
Deep Imbalanced Regression,” in Proceedings of the 38th International
Conference on Machine Learning. PMLR, Jul. 2021, pp. 11 842–11 851.

[9] E. Pajouheshgar and C. H. Lampert, “Back to square one: Probabilistic
trajectory forecasting without bells and whistles,” Dec. 2018.

[10] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M.
Wolff, “CoverNet: Multimodal Behavior Prediction using Trajectory
Sets,” Apr. 2020.

[11] O. Makansi, E. Ilg, O. Cicek, and T. Brox, “Overcoming Limitations
of Mixture Density Networks: A Sampling and Fitting Framework
for Multimodal Future Prediction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
7144–7153.

[12] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep Long-Tailed
Learning: A Survey,” arXiv:2110.04596 [cs], Oct. 2021.

[13] N. Moniz, P. Branco, and L. Torgo, “Evaluation of Ensemble Methods
in Imbalanced Regression Tasks,” in Proceedings of the First Interna-
tional Workshop on Learning with Imbalanced Domains: Theory and
Applications. PMLR, Oct. 2017, pp. 129–140.


