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Abstract—Robot navigation in human centric environments,
such as homes or office spaces, remains a challenging task. In
such spaces humans do not follow strict rules of motion and
there are often multiple occluded entry points such as corners
and doors that create opportunity for sudden encounters. In this
work, we present a human-centric scene transformer to predict
human future trajectories from input features including human
positions, and 3D skeletal keypoints from onboard in-the-wild
sensory information. The resulting model captures the inherent
uncertainty for future human trajectory prediction and achieves
state-of-the-art performance on common prediction benchmarks
and a human tracking dataset captured from a mobile robot.
Furthermore, we identify agents with limited historical data as a
major contributor to error and demonstrate that our approach
achieves a displacement error reduction of up-to 11% using 3D
skeletal poses perceived by a mobile robot.

I. INTRODUCTION

Predicting human trajectories within indoor environments
such as offices, homes and care facilities could have a profound
impact on service robotics. These environments are narrow
with multiple occluded entry-points resulting in close proxim-
ity upon first observation. Our goal is to enable more natural,
safe, smooth, and predictable navigation by anticipating where
humans will be moving in the near future using the robot’s
onboard sensors.

We present the Human Scene Transformer (HST) which
leverages different feature streams: Historic positions of each
human, vision-based features such as skeletal keypoints (see
Figure 1, joints of the human skeleton) or head orientation
when available. We specifically focus on demonstrating the
usefulness of noisy in-the-wild human skeletal information
from a 3D human pose estimator. While prior Transformer
prediction architectures [25] implicitly model interactions be-
tween humans at individual timesteps using single-axis at-
tention, we allow for attention between humans at differing
time — historic actions can directly influence another humans
position at later time — by offering a simple alignment
mechanism. As such our contribution is threefold:

(I) To the best of our knowledge, we are the first to
demonstrate that detailed human 3D vision-based features
improve predictions in a human-centric service robot context
notwithstanding imperfect in-the-wild data. Especially, we
showcase the benefits of our approach in critical situations
such as close proximity between robot and human on early
observation.

(II) We present a prediction architecture (HST), which
flexibly processes and includes detailed vision-based human
features such as skeletal keypoints and head orientation. To
target crowded human-centric environments, HST builds upon
ideas from trajectory prediction in autonomous driving. We
demonstrate HST’s capability to consistently model interac-
tions which is critical in human-centric environments.

(III) We evaluate the system’s capabilities on a dataset
recorded from a service robot’s sensors and re-purposed for
the prediction task. Simultaneously, we display state-of-the art
performance on a common outdoor pedestrian dataset.

Fig. 1: A service robot navigating a busy office space. To do so it anticipates
human motion using human-position and visual 3D skeletal keypoints.

II. RELATED WORK

Prior works in trajectory prediction commonly target the
autonomous driving use-case [32, 28, 25, 24, 41, 5, 15] and
rely on GANs [9, 27] or CVAEs [21, 14, 28, 12, 13], this work
follows the recent trend towards Transformers [25, 41, 24]
as they naturally lend themselves to the set-to-set prediction
problems such as multi-agent trajectory prediction and are
invariant to a varying number of agents. Another related
area is human pose forecasting in 3D [4, 40, 42, 22, 29].
However, these approaches commonly consider a single human
motion relying on ground truth pose information from a
motion capture system, while we target multi-human in-the-
wild scenarios.There have been prior efforts to combine pose
estimation with trajectory prediction, i.e., informing forecasted
trajectories by incorporating historic pose information. How-
ever, these works are either operating on motion capture
datasets which do not exhibit diverse positional movement
of the human [16, 4, 18, 30] or are limited to prediction in
2D image space [39, 3, 5]. However, for robotic navigation
it is desired to obtain predictions for agents across multiple
sensors and in a 3D or bird’s-eye metric space. We follow these
requirements by solely relying on onboard sensor information
of a robotic platform and predict in the metric frame rather
than in image space.

III. HUMAN SCENE TRANSFORMER

To incorporate vision-based human features and achieve
state-of-the-art trajectory prediction performance, we present
Human Scene Transformer (HST). HST follows the concept of
masked sequence to sequence prediction using an architecture
with Transformer blocks. This concept has shown promising
vehicle prediction results in the autonomous driving domain
[25]. HST introduces multiple important ideas extending the
general Transformer architecture which makes it suitable for
human trajectory prediction. These include the utilization of
vision-based human features, a feature attention mechanism to
merge multiple, potentially incomplete features, an improved
attention mechanism facilitating a more complete information
flow, and a self-alignment layer which elegantly solves the
problem of discriminating between multiple masked agent
timesteps while keeping permutation equivariance.
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Fig. 2: Overview of the HST architecture.
From the robot’s sensors we extract the scene
context, the historic tracks of each agent, and
vision based skeletal keypoints/head orienta-
tion when feasible. All features are encoded
individually before the agent features are
combined via cross-attention (XA) using a
learned query tensor. The resulting hidden
vector passes to our Agent Self-Alignment
layer which enables the use of subsequent
full self-attention (FSA) layers. Embedded
scene context is attended to via cross-
attention (XA). After multimodality is in-
duced and further FSA layers the model out-
puts the parameters of a Normal distribution
for each agent at each prediction timestep.
We can represent the full output structure as
a Gaussian Mixture Model (formula in bot-
tom right) over all possible futures where the
mixture coefficients w come from the Mul-
timodality Induction. Both cross-attention
(XA) and full self-attention layers use the
Transformer layer (top right) with different
input configurations.

A. Model Inputs: Incorporating Vision-based Features
We process the robot’s observations at each timestep

O(t), . . . , O(t − H) into agent features and scene context
(Figure 2 - blue box). Scene context can be an occupancy
grid or a LiDAR point cloud at the current timestep, containing
information common to nearby agents (e.g. static obstacles).
Agent features include the centroid position and vision-based
features: skeletal keypoints, and head orientation for each
agent. For each detected N nearby humans (equivalent agents)
in the scene, we project the 3D bounding box into the 360
degree image using ex- and intrinsic camera calibrations. This
results in an associated image patch for all agents. To extract
2D skeletal key points from these patches, one could choose
from a plethora of off-the-shelf skeletal keypoints extractor for
images [2, 7, 20, 34, 33]. To produce 3D keypoints, we apply
the work of Grishchenko et al. [8] to estimate 3D keypoints
from images using a pre-trained model. As existing datasets
commonly only include 2D keypoint annotations, the 3D label
required for supervised pre-training is generated by fitting
a parametric human shape model to available 2D keypoints
solving the following optimization problem:

argmink

(
‖r(k)− k̂2‖2 + λp(k)

)
, (1)

where k are the 3D skeletal keypoints, k̂2 is the 2D keypoints
label, r : R33×3 → R33×2 is the re-projection function of 3D
points into the 2D image space using the camera calibrations.
To capture both head information and limb articulation, we
choose a 33 keypoints skeleton representation [8, 38]. The
learned prior distribution over human pose configuration p(k)
penalizes infeasible poses which can arise in optimization for
the underdetermined 3D-2D-projection problem.

B. Model Architecture

Transformer Layer. The primary building block of the
model’s architecture is the Transformer layer (Figure 2 - top
right), which itself is comprised of a Multi-Head Attention
layer [35] and multiple dense and normalization layers. For a
comprehensive explanation on the Attention mechanism and
its inputs we refer the reader to Vaswani et al. [35]. We
define a self-attention (SA) operation as a Transformer layer
where inputs Query (Q), Key (K), and Value (V) are the same

tensor: The tensor attends to itself and conveys it’s information
along one or more dimensions. Similarly, we define cross-
attention (XA) as a Transformer layer where the Q input is
distinct from the K/V inputs. Intuitively the query attends to
additional information from a different tensor as means of
merging multiple streams of information.
Input Embedding. The input agent features (blue) are tensors
of shape [N,T, d], where d = 2 for the x-y centroid position,
d = 99 for the x-y-z position of 33 skeletal keypoints, and
d = 1 for the head orientation. We mask all future as well as
unobserved agent timesteps by setting their feature value to 0,
making only available historical and current information ac-
cessible to the model. This masking approach is a well known
technique in missing-data problems such as future prediction
using Transformer based architectures [35, 25, 41]. Masking
exploits the inductive bias inherent in the prediction problem,
which allows for the filling of missing information using
available context in vicinity of the gaps. As such, our approach
allows for missing keypoints in frames due to bad lighting
or other influences as the Transformer effectively “fills” in
for the missing information. The agent features are encoded
independently and are combined by a learned attention query.
This masked attention mechanism offers scalability to systems
with large number of features with limited availability.
Full Self-Attention Via Agent Self-Alignment. Previous
methods [25] rely on factorized attention, where information
is alternately propagated along the time and along the agent
dimension. In social interactions, however, a change in action
such as adjustment in walking direction does not have an
immediate influence on other humans in proximity but rather
influences their future. Following this illustration, an agent’s
latent representation at a given timestep in our Transformer
architecture should be able to attend not just to other agents
at the current timestep (factorized attention) but to all agents at
all timesteps. This operation, which we name full self-attention
(FSA), can propagate the same information flow across both
agents and time with a single operation leading to improved
performance and a smaller model.

After embedding, all future timesteps of all agents are
masked out to not hold any information. Naı̈vely applying
full self-attention results in two agents that inevitably have



the same masked future timesteps to also have the same input
(Query) representation to the Transformer layer (Figure 2
- top right). This results in the same attention to historic
input information across all agents. Intuitively, using this naı̈ve
approach, when filling the masked future timesteps in a full
self-attention step, the model can not associate future timesteps
of an agent with its history as all future agents’ timesteps
“look” the same (masked). The problem could be addressed
by enforcing an innate order on perceived agents, where all
agents are enumerated. This, however, would eliminate the
permutation invariant set-to-set prediction capabilities; one of
the core strengths of Transformers.

Instead, we achieve full self-attention via a simple approach
that we refer to as agent self-alignment mechanism (dark green
box in Figure 2). After the agent embeddings are combined,
we cross-attend with a learned query tensor only in the time
dimension. This query, a weight matrix jointly optimized with
all other network weights during training, learns to propa-
gate available historic information for each agent to future
timesteps, enabling the model to align future masked timesteps
of an agent with historic ones during full self-attention without
an explicit enumeration embedding. This agent self-alignment
mechanism preserves agents’ permutation invariance and en-
ables full self-attention without restricting information flow
along matching timesteps [25] or utilizing special attention
matrices which explicitly separates agents [41]. The output
tensors of the agent self-alignment then passes through K
Transformer layers with full self-attention across agents and
time before cross-attending to the encoded scene features.
Multimodality Induction. Our architecture can predict mul-
tiple consistent futures (modes) for a scene. To do so, the
Multimodality Induction module repeats the hidden vectors by
the number of future modes (M ), resulting in a tensor of shape
[N,T,M, h]. To discriminate between modes it is combined
with a learned mode-identifier tensor of shape [1, 1,M, h].
Each future’s logit probability wm; m ∈ 1, . . . ,M is inferred
by having the mode-identifier attend to the repeated input.
Prediction Head. The hidden vectors updated with the learned
mode-identifier go through L Transformer layers, again with
full self-attention, before predicting per mode parameters µ, σ
using a dense layer as prediction head.

C. Producing Multimodal Trajectory Distributions
Combining µ and σ with the mode likelihoods wm from

the multimodality induction, the distribution of the i-th agent’s
position at each timestep t is modeled as a Gaussian Mixture
Model (GMM):

P iθ(xt|O(t), ..., O(t−H)) =

M∑
m=1

wmN (x;σm,i,t, µm,i,t), (2)

where m is the m-th future mode.
We adopt a joint future loss function, that is, the cumulative

negative log-likelihood of the Gaussian mode (m∗) with the
smallest mean negative log-likelihood:

LminNLL =
∑
i,t

−log(N (x∗
i,t;σm∗,i,t, µm∗,i,t)), (3)

where x∗
i,t is the ground truth agent position.

The resulting prediction represents M possible realizations
of all agents at once in a consistent manner, where the mode
mixture weights w are shared by all agents in the scene.

IV. EXPERIMENTS

We structure our experiments to support our contributions:
First, we will highlight a gap in prior work by showing
the limitations of existing datasets for human trajectory pre-
diction in indoor navigation and propose an adaptation of
existing datasets. Further, we qualitatively and quantitatively
demonstrate that our architecture provides accurate predictions
for the human-centric service robot domain, where HST can
leverage and model interactions between humans consistently
over multiple possible futures. We especially demonstrate how
HST can leverage vision-based features in human-centric envi-
ronments to improve prediction accuracy, specifically in short
history situations where prediction errors are high. Finally,
we demonstrate that our approach is cross-domain compatible
with unconstrained outdoor pedestrian prediction.
Datasets. Many of existing datasets are collected from a single
top-down camera in a limited number of environments, such
as the ETH [26] and UCY [17] pedestrian datasets. Others
are specific to the autonomous driving domain [6, 1, 37,
10], mostly focusing on predicting vehicles. While none of
these datasets provide labels for skeleton keypoints, other
datasets [11, 19, 36] which are collected using a motion
capture system or wearable IMU devices, do offer such labels.
However, these datasets are limited to artificial environments
and often feature stationary or scripted motions.

One dataset which is recorded in diverse human-centric
environments using sensors on a mobile robotic platform is the
JackRabbot Dataset and Benchmark (JRDB) [23]. However,
JRDB was created as a detection and tracking dataset rather
then a prediction dataset. To make the data suitable for a
prediction task, we first extract the robot motion from the raw
sensor data to account for the robot’s movement over time.
Tracks are generated for both train and test split using the
JRMOT [31] detector and tracker. The ground truth labeled
bounding-boxes on the train set were disregarded as they
were exposed to filtering during the labeling process to the
point where the smoothness eases the prediction task. We
were able to increase the number human tracks for training
by associating the JRMOT detections to ground truth track
labels via Hungarian matching, while on the test split we
solely use JRMOT predictions. Due to factors such as distance,
lighting and occlusion the pre-trained 3D pose estimator
model (Section III) is not guaranteed to produce keypoints
for all agents at all timesteps. We observed human keypoints
information in ∼ 50% of all timesteps for all agents.

In addition, we also compare our model to the ETH [26]
and UCY [17] datasets. These are standard benchmarks for
pedestrian trajectory prediction and enable a fair comparison
of our architecture against other methods.
Trajectory Prediction in Human-centric Environments. In
Table I and Figure 3 we show quantitative and qualitative
results of HST’s predictions in the human-centric environment.
We show that in crowded human-centric environments the
influence of interaction between humans has large benefits on
the prediction accuracy of each individual. To show this, we
compare against a version of our model which is trained to
predict a single human at a time ignoring interactions with
other agents. Subsequently, adding our full self-attention via
self-alignment mechanism additionally increases the model’s
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Fig. 3: Consistently modeled interactions in different predicted futures
for a single scene in the x-y-plane [m]. Two humans approaching each
other head on. (a) History (solid) and ground truth future (dashed - increasing
transparency with time) of both humans. (b) Two of the M predicted futures
(dots) of the scene by HST. Within each mode the influence and reaction of
both agents is consistent and reasonable. The humans’ futures are predicted
without collisions giving each other space to navigate within the specific
predicted future mode of the scene.
TABLE I: Comparison against Scene Transformer on JRDB prediction
dataset. HST outperforms the original Scene Transformer on all metrics.

Model Configuration minADE MLADE NLL

Scene Transformer [25] 0.53 0.86 0.25

Full Self-Attention Interaction Attention
HST 7 7 0.57 0.93 0.89
HST 7 3 0.50 0.84 −0.02
HST 3 3 0.48 0.80 −0.13

ability to capture interactions across time, leading to improve-
ments across all metrics. The capability to consistently account
for interactions between humans is qualitatively demonstrated
in Figure 3 where we show multiple predicted futures for a
scene of interacting humans.
Vision-based Features. We consider the adversarial setting,
where the robot encounters a human unexpectedly, i.e., the
robot observes a new human with little historical observations.
We note that prediction architectures solely relying on historic
position information struggle in scenarios where no or only a
limited amount of history of the human position is available to
the model. Specifically, at the first instance of human detection,
experimentally the error is up to 200% higher compared to
full historic information over 2 s. Given the specifics of our
targeted human-centric environment, where we are mostly
interested in humans close to the robot, we are likely able
to extract vision-based features for the human in addition
to the position. Specifically, we target the research question:
“Can information from human visual features lead to improved
prediction accuracy?”

Before answering this question quantitatively we show a
clarifying visual example in Figure 4 where a human just
entered the scene through a door and is first detected. When
solely relying on historic position information the most likely
prediction by the model is stationary. However, when we
employ the pre-trained skeleton keypoints estimator to provide
pose keypoints as additional input to our model it correctly
recognizes the human’s walking motion and how the human is
oriented, accurately predicting the most likely future trajectory.

Quantitatively, during evaluation, when keypoints are avail-
able on the first detection we observe a substantial prediction
improvement of up to 11% (Figure 5). When additional
timesteps with position information are available the improve-
ment using keypoints vs not using keypoints averages between
5% and 10%. The relative improvement generally increases
with the number of timesteps with keypoints in the history and
decreases with the number of historic position information.

(a) First detection of per-
son entering the scene.

(b) Prediction with key-
points.

(c) Prediction without
keypoints.

Fig. 4: A visualization of the predicted trajectory distributions for a new
human agent entering the scene through the door on the right as viewed in
(a). For both (b) and (c) the HST model does not have any historic information
here and only has access to the current frame. The plot of future trajectory
distributions in (b) and (c) show the effect of using and not using skeletal
keypoints (respectively) as input in that single frame. Without pose keypoints
the HST model predicts the agent to be most-likely stationary while, with
keypoints as input, it can reason that the human is moving and correctly
anticipates the direction. Blue dot is the detected human at the initial frame,
orange dots are most likely mode predictions with corresponding distribution
shown in blue shading, green dots are the ground truth human future.

Fig. 5: Impact of vision-based features conditioned on different number of
consecutive non occluded input timesteps.

Pedestrian Dataset. We further validate our architecture
against a range of state-of-the-art prediction methods on a
dataset which has been used by the community for several
years: On the ETH/UCY dataset (Table II), we either improve
current state-of-the-art methods or are on par with them on 4
out of the 5 scenes leading to the best overall average.

V. CONCLUSION

While concepts originally designed for trajectory prediction
in autonomous driving are generally transferable to the domain
of human-centric service robot environments, they suffer in
challenging settings where the history of a human is lim-
ited. Specifically in these situations we demonstrate how the
HST can leverage vision-based features to improve prediction
accuracy. Beyond scenarios such as when robot and human
encounter each other in blind corners, general improvement
trends using in-the-wild skeletal pose detections were also
observed with more observations. Our architecture finds state-
of-the-art prediction results on a common pedestrian prediction
dataset and improves upon existing autonomous driving pre-
diction models in the domain of human-centric service robot
environments.

TABLE II: Overall results on ETH and UCY datasets.

Method minADE20 / minFDE20

SoPhie [27] 0.54 / 1.15
Trajectron++ [28]1 0.32 / 0.55
AgentFormer [41]1 0.23 / 0.39
Scene Transformer [25] 0.31 / 0.40

HST 0.22 / 0.38
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