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Abstract— Predicting the future behaviour of people re-
mains an open challenge for the development of risk-aware
autonomous vehicles. An important aspect of this challenge
is effectively capturing the uncertainty inherent to human
behaviour. This paper studies an approach for multi-modal
probabilistic motion forecasting of an agent with improved
accuracy in the predicted sample likelihoods. Our approach
achieves state-of-the-art results on the inD dataset when evalu-
ated with the standard metrics employed for motion forecasting.
Furthermore, our approach also achieves state-of-the-art results
when evaluated with respect to the likelihoods it assigns to its
generated trajectories. Evaluations on artificial datasets indicate
that the distributions learned by our model closely correspond
to the true distributions observed in data and are not as prone
to being over-confident in a single outcome in the face of
uncertainty.

I. INTRODUCTION

As we strive towards developing autonomous agents that
are active in human-centered environments, we should pro-
vide our agents with the means to understand their envi-
ronment and anticipate how it may change in the future.
Of particular interest is predicting the future trajectories of
people — from pedestrians and cyclists to road agents — to
improve motion planning algorithms. However, most times
the trajectories of people are not deterministic, instead they
tend to take on a probabilistic form, sometimes involving
complex and multi-modal distributions. An example of such
a multi-modal distribution can be seen when vehicles ap-
proach an intersection like in Fig. [T} In such a case, one can
consider the three possible options of going straight, left,
or right as the modes of the distribution. These are the most
obvious high-level modes one might expect to see. However,
there can also be other distinct modes present in data which
may not be as obvious and may get overlooked by methods
which rely on a predefined number of modes.

Ideally, when learning a distribution over the expected
motion of people in a scene, the learned model should have
the following capabilities:

1) it should be able to capture all the expected modes.

2) It should be real-time capable, and

3) it should be able to assign a meaningful likelihood to
the samples it generates.

By having all these aspects, these models have the potential
to provide more informative predictions to motion planners
for uncertain, dynamic environments.
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Fig. 1: Predictions of TrajFlow. The colour of each trajectory corresponds
to its likelihood. The thin blue line corresponds to the past trajectory.

Out of the existing approaches, a great deal of focus has
gone into providing predictions of distributions at individual
time steps. These kinds of predictions can, however, lead to
more conservative strategies within the subsequent motion
planning [1]. For this reason, it would be more beneficial to
capture the distribution over trajectories as a whole.

At the same time, current datasets (e.g. ETH [2]/UCY [3],
inD [4], Argoverse [5], etc.) do not provide the means for
systematically evaluating the performance of learned models
in terms of the distributions that they predict. The issue lies
in the fact that within existing datasets, there is only a single
sample of the ground truth future per situation. This makes
it increasingly difficult to determine the extent to which
probabilistic predictions reflect the underlying distributions
present within these datasets.

The contributions of this paper are two-fold. As a first
step, we introduce an architecture for learning a prediction
model that has the three previously mentioned capabilities.
To enable an effective learning of a given distribution over
complex and multivariate trajectories we introduce an inter-
mediate representation of the trajectories using a Recurrent
Neural Network Autoencoder. This intermediate representa-
tion captures the most relevant features of the trajectories
and in turn also simplifies the learning of the underlying
distribution. Secondly, we evaluate our architecture against a
baseline method with focus on their likelihood predictions.
Through this, we demonstrate why there is a need for more
focus on the learned distributions and structured datasets for
the evaluation of probabilistic models.

II. RELATED WORK

Several methodologies for predicting distributions over
traffic agents’ future motions have been proposed. Gen-
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Fig. 2: TrajFlow architecture overview for both directions of the normalizing flow. In the normalizing direction, the NF transforms the encoded future
trajectory into a sample within its base distribution and returns the likelihood of the encoded trajectory. In the generative direction, the NF generates
encoded future trajectories, which are then decoded, and also provides the likelihood of the encoded trajectory.

erative networks such as Generative Adversarial Networks
(GANSs) [6], [7] and networks based on Variational Autoen-
coders (VAE) such as Conditional VAEs (CVAEs) [8], [9]
and Variational Recurrent Neural Networks (VRNNSs) [10],
[11] are particularly interesting as they have the potential to
learn complex distributions without specifying the number
of expected modes. Nevertheless, neither of the two enable
an exact calculation of the likelihoods of generated samples.

Recently, new promising approaches based on Normaliz-
ing Flows (NFs) [12]-[16] have been introduced for learning
the complex distributions over agents’ future motions. While
the above NF methods already demonstrate good qualitative
results in predicting multiple future trajectories, they have
yet to make full use of the exact likelihoods inferred by the
learned models. In this paper we propose an architecture
which makes use of encoded future motions to facilitate
the learning of the underlying distributions present in data.
This results in a model which is able to provide likelihoods
that are not only relevant for ranking generated samples, but
likelihoods that are also in line with the likelihoods of the
true underlying probability distribution function.

III. METHOD
A. Normalizing Flows

Normalizing Flows [17], [18] constitute a family of gen-
erative methods which enable exact likelihood computation.
They are based on the concept of transforming complex
distributions through a series of differentiable bijective func-
tions into a simple distribution for which the probability
distribution function is known — most commonly a standard
normal distribution. For an extensive overview of flow mod-
els, we refer the reader to [19].

Our method employs the same form of NF structure as the
one used in FloMo [13]. In FloMo this architecture is em-
ployed for learning distributions directly on two-dimensional
trajectories. Within TrajFlow we instead generate a lower
dimensional representation of the trajectories. FloMo can
then be seen as a specific version of TrajFlow, where the
encoder and decoder are identity functions. Below we present
two important aspects of the theory behind NFs which are
relevant for the reasoning behind our architecture.

1) Sampling and Likelihood Evaluation: To obtain a sam-
ple from the desired complex distribution over outputs Y,
one can sample from the base distribution and propagate it

in the generative direction. The Probability Density Function
(PDF) of the complex distribution can then also be obtained
in terms of the PDF of the base distribution as follows:

py(y) = p=(F(y))| det Jrp(y)|
= p-(G~H(y))|det Jg1(y)| (1)
= p,(z)| det Jg(Z)|_1,

where z is a sample from the base distribution and Jg
is the Jacobian of the generative transformation G. The
absolute determinant of the Jacobian |det Jz(z)| quantifies
the relative change of volume within a small neighbourhood
of z when transforming it to a sample y using G.

2) Training Normalizing Flows: In order to learn the pa-
rameters of the NF, the KL-divergence can be employed for
minimizing the distance between the target distribution p; ()
and the distribution learned by the model p,(y):

L = Dxu[py (y)|lpy(y)]

= —E,: (y)[log pz(F(y)) + log | det Jr(y)] .
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where N refers to the number of samples in a training batch.

B. Network Architecture

An overview of the TrajFlow architecture can be seen
in Fig. 2l What makes our architecture unique and better
equipped at learning meaningful likelihoods of a distribution
is the introduction of a Recurrent Neural Network Autoen-
coder (RNN-AE), shown in orange, for learning an encoded
representation y.,. of the future trajectory y.

1) The RNN-Autoencoder: is based on a Gated Recurrent
Unit (GRU). Before passing the trajectory y to the GRU,
it is embedded by a linear layer into a matrix of the size
Tored X em_size. The output of the GRU is passed through a
linear layer which transforms the last dimension of the layer’s
input into enc_size. To obtain a compact representation of
the form 1 X enc_size we take the final row of the output.
This compact representation is then provided to the NF for
learning the distribution in the encoded space.

In order to decode the predicted encodings, we employ
an auto-regressive decoder structure. The encoding is passed
through a linear layer, which retains the dimensions of the
input, before being passed through a GRU. Finally the output



Training Data — 3000 samples

-0.5
-1.0
-15

—2.0

y[ml

-2.5

-3.0

-3.5

—-4.0

x [m]

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014
L

FloMo — 3000 samples

TrajFlow — 3000 samples

3385 ° -o0.5
-1.0
—1.5]

=20

2.5/
-3.0
-35

-4.0

x [m] x [m]

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.000 0.002 0.004 0.006 0.008
Z Z

Fig. 3: Trajectory distributions for the case of s ~ N'(x = 1,0 = 0.15). On the left is the training distribution consisting of 3000 samples. The remaining
two images are trajectories with their likelihoods as generated by FloMo and TrajFlow respectively.

is passed through a linear layer which transforms the output
into a vector of the form 1 x 2. This corresponds to the
predicted position of a single time step. The final hidden
output of the GRU is then taken as the new input to the
initial linear layer, and the decoding procedure is repeated
as many times as the number of desired time steps Tjreq.

IV. EXPERIMENTS

We test our proposed method on two toy datasets in which
we know the expected distributions of the future trajectories
in order to test the capabilities of our model for predicting
sample likelihoods. Additionally, we test our method on real
data with the inD dataset [4], which is one of the standard
datasets used for motion forecasting. This evaluation is
primarily useful for verifying that the introduction of the
RNN-AE does not lead to a performance degradation in the
trajectory predictions themselves. FloMo is used as a baseline
and tests are performed using code available on GitHub El
Below are some highlights of our results. For more detailed
experimental results and implementation details we would
like to refer our readers to [20].

A. Evaluation on Generated Bi-Modal Datasets (Case 1)

In order to evaluate the capability of our model to capture
the underlying distribution of observed data, we construct a
collection of bi-modal datasets. As a basis for generating the
distribution within each mode, we recorded two trajectories
with distinct directions and a future segment of 14 time steps.
These segments were then scaled with a factor s sampled
from a desired distribution. This way, we obtain a distribution
of trajectories. To obtain the true distribution function, we fit
a D-dimensional Gaussian to each mode, where D is 27}.cq.
For the past, we use a single observation of 10 time steps.

We perform this test both using our architecture and the
FloMo architecture. For both models we evaluate the KL-
Divergence using N = 100 samples (see Fig. @). We can
observe that FloMo exhibits a noticeably higher divergence
from the true distribution, with the divergence value on the
sampled trajectories generally being above 6, compared to
our approach which shows divergence values of around 1
to 1.5. Similarly, the KL-Divergence between the training

lhttps://qithub.com/cschoeller/flomo_motion_
prediction
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Fig. 4: KL-Divergence of FloMo and TrajFlow on the bi-modal trajectory
distributions. The 5 sets of bars correspond to 5 sets of 100 samples; relevant
for the results on the sampled data. ‘On training data’ and ‘on samples’
refer to evaluations of the likelihoods that the models assign to the original
training data and their own generated trajectories respectively.

distribution and the distribution fitted over the training sam-
ples by FloMo is noticeably higher than that of our model.
A qualitative look at the predictions is provided in Fig. [3]
Overall, our approach is able to better capture the underlying
distribution over the trajectories.

B. Evaluation on Artificially Generated Datasets (Case 2)

The second collection of datasets consists of trajectories
with three distinct possible directions, i.e. modes — straight,
left, and right. All trajectories start by moving straight and
may branch off left or right. At 30 specific time points
along the trajectory which the agent chooses to follow, the
prediction model leverages the previous 8 time steps of
observations to forecast the subsequent 22 time steps. The
percentage of trajectories going in each direction from a
given current point is taken as the ground truth likelihood.

Over the 6 scenes we observe a strong tendency towards
a single mode within the predicted likelihoods of the FloMo
model (see Fig. [5] for example). This is the case even when
there are no features within the past trajectory by which to
discriminate the possible future outcomes, such as at the very
beginning of the sequence. In the case of our model, the
summed likelihoods within a mode more closely capture the
expected distributions of the trajectories. Fig. [5] shows an
example of the predicted likelihoods for each of the three
modes as the agent follows a straight trajectory.
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Fig. 5: Likelihood Predictions for all three modes for one of the scenes in the second artificial dataset.
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C. Evaluations on inD

For comparability, we perform the evaluations with 1/5
resolution in accordance to [12]. For encoding the context
we make use of both the RNN encoder for the past trajectory,
and the CNN encoder for the static scene information (see
Fig. ). The results can be seen in Tab. [ We include the
results of our model and FloMo both when trained and
tested on all the classes, which include pedestrians, bicycles,
cars, trucks, and busses as well as when only vehicles (cars,
trucks, and busses) are considered. The reason is that, since
motorized vehicles tend to move faster, the largest errors
that will tend to be observed in the evaluations will be within
those classes. We compare our results to those of HBA-Flow,
presented in [12]. It can be seen that our method outperforms
state-of-the-art methods in both cases.

Qualitatively, we observe that our method can capture
the different possible future trajectories. To further examine
the quality of our model’s predictions we compare them to
an estimated distribution of vehicle trajectories within the
dataset. The distribution of the trajectories is obtained by
segmenting the scenes based on the road a vehicle is coming
from and observing whether the vehicle goes left, right,
straight or is idle in the future which gives us 4 relevant
modes. For each road we determine the percentage of future
trajectories belonging to each of the modes. To compare to
the trajectories in the dataset we employ the same approach
on the predictions of our model. Fig. [6] shows an example
case. We observe that the predictions of our model tend to
gravitate around the percentages seen in the dataset, while
FloMo tends to have a bias towards going straight. Whether
high confidence in a single outcome is desired in specific
cases is difficult to discern from the given dataset. It is safe
to say that if this is a general bias across most of the cases
from a road in which other possible motions have a non-
negligible likelihood of occurring, which Fig. [f] points to, the

FloMo TrajFlow FloMo TrajFlow

Fig. 6: Boxplots of the predicted likelihoods per mode for the scene in Fig.
|I| with vehicles approaching the intersection from the northeast road.

model runs the risk of disregarding the remaining motions.

V. CONCLUSIONS

In this work we investigated a motion forecasting approach
based on Normalizing Flows. We were able to corroborate
that models based on NFs can capture multivariate and
multi-modal distributions solely from data without prior
assumptions over the number of expected modes; something
which has been shown in related works on NF-based models.
Secondly, we proposed an approach which better captures
the underlying distributions of the data, resulting in better
likelihood values of generated samples.

To showcase the true potential of our approach, however,
we had to devise simulated test cases. Current datasets
are focused towards capturing naturalistic motion data from
human traffic participants. As such, these datasets inherently
have only a single deterministic ground truth. Nuances in the
past trajectories may provide a model enough information to
provide a single confident prediction for a given situation.
This may not always be the case, however, and overconfi-
dence in a single prediction can end up being detrimental to
downstream motion planning tasks. If there is only a single
ground truth trajectory on which to evaluate the predictions
of a model it becomes virtually impossible to determine
whether high confidence in a prediction is indeed desired or
if a model is inherently prone to generate biased predictions.
An important matter which remains to be addressed is the
establishment of diverse and realistic datasets for evaluating
probabilistic motion forecasting methods.
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