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Abstract— The ability to anticipate pedestrian motion
changes is a critical capability for autonomous vehicles. In
urban environments, pedestrians may enter the road area
and create a high risk for driving, and it is important to
identify these cases. Typical predictors use the trajectory
history to predict future motion, however in cases of motion
initiation, motion in the trajectory may only be clearly visible
after a delay, which can result in the pedestrian has entered
the road area before an accurate prediction can be made.
Appearance data includes useful information such as changes
of gait, which are early indicators of motion changes, and can
inform trajectory prediction. This work presents a comparative
evaluation of trajectory-only and appearance-based methods for
pedestrian prediction, and introduces a new dataset experiment
for prediction using appearance. We create two trajectory
and image datasets based on the combination of image and
trajectory sequences from the popular nuScenes dataset, and
examine prediction of trajectories using observed appearance to
influence futures. This shows some advantages over trajectory
prediction alone, although problems with the dataset prevent
advantages of appearance-based models from being shown. We
describe methods for improving the dataset and experiment to
allow benefits of appearance-based models to be captured.

I. INTRODUCTION

Autonomous Vehicles (AV) need to operate in areas where
pedestrians are present. Prediction of future behaviour is im-
portant for avoiding conflict, especially when vulnerable road
users such as pedestrians are present. Pedestrian prediction
is hard since they can change direction and start or stop
moving, and it is high risk, for example if they enter the
road area. Conservative estimates of pedestrian motion can
allow potential actions to be captured and avoided, however
can lead to very conservative driving of an AV and prevent
progress. A better approach is to accurately identify when
changes of motion occur, and to use accurate predictions to
avoid conflict situations.

Existing methods predict future motion based on an ob-
served history of positions. A significant limitation of these
approaches is that when changes of motion take place, such
as initiation of motion to enter a road area from a stationary
position, there is a delay before the motion can be accurately
observed in the trajectory, and used to make an accurate
prediction. Noise is present in the estimated position, and
the greater the noise the later that motion initiation can
be reliably observed. Appearance cues such as changes of
body pose provide additional information about pedestrian
actions, such gait changes when pedestrians begin or stop
moving. These appearance cues can reliably inform when
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Fig. 1: Example of cropped pedestrian appearance, showing
gait change with motion initiation

motion changes are taking place, and provide an early and
accurate signal of motion. Figure 1 illustrates an example.

Pedestrian appearance has been used previously to esti-
mate whether a pedestrian intends to cross the road, and to
inform prediction of the future position of the pedestrian
in the camera view. Common datasets are PIE [1] and
JAAD [2], [3]. These methods demonstrate classification of
pedestrian crossing intent, and prediction of future positions
within the camera view. In order to use these approaches to
support an AV, further steps are needed to infer behaviour in
the world space in Cartesian coordinates, and it is unclear
how well camera-based prediction can inform the future
world position of pedestrians.

Prediction of pedestrian motion is inherently a multimodal
task- if a pedestrian is standing beside the road area there are
at least two significant possibilities to consider, of whether
they remain stationary or begin moving into the road. A
multimodal predictor can create a predicted trajectory for
each mode, and assign a probability estimate for each event.
Previous methods [4] have described effective methods for
evaluating multimodal predictions of road users. These evalu-
ations test whether distinct modes of behaviour are captured,
as well as the probability distribution, which is useful for
evaluating multimodal predictions of pedestrian motion.

We present an experimental task for pedestrian prediction,
that includes a dataset of cropped images of pedestrians,
along with their associated trajectory in world coordinates.
This dataset is constructed using data from the nuScenes
dataset [5], which combines camera information with pedes-
trian trajectories, to produce an experimental task for pedes-
trian prediction including the use of observed appearance.
This experiment involves using a history of images and
trajectory positions, and predicting future positions, eval-
uated using the multimodal prediction measures from [4].
This experimental task allows a model to predict behaviour



modes, such as motion initiation and standing still, using the
appearance of pedestrians to provide cues when changes of
motion take place.

To solve this task we compare physics-based models,
trajectory-only prediction, and two network architectures
using a Convolutional Neural Network (CNN) model and
pre-calculated pose features for interpreting pedestrian ap-
pearance. This examines how pedestrian appearance such as
changes of gait, can be used to estimate the future trajectory
modes of pedestrians, using a prediction representation that
can be used by an AV planner to control the vehicle while
avoiding potential conflicts with pedestrians.

II. EXISTING METHODS

A number of approaches have been proposed for predic-
tion of agents in road areas, including physics, goal, and
regression methods, using trajectory and appearance data.

Kinematic models, e.g. constant velocity (CV) or accel-
eration [6], efficiently capture simple motions and can be a
reasonable estimate when an agent is moving consistently. A
study [7] has suggested that CV models perform as well as
data-driven methods for pedestrian trajectories. Goal-based
methods [8], [9], [10], [11], [12] estimate a belief that each
goal is being pursued by the agent, for example using scene
information. There can be a large number of possible goals a
pedestrian may follow, and it may not be possible to reliably
identify goal-directed behaviour.

Regression-based methods directly map observations to
predicted outputs. These representations can include inter-
actions between multiple agents of varying classes, and map
elements. Recent architectures [10], [13], [4] are based on
Graph Neural Networks (GNN), which can capture complex
representations and interactions. Further models have exam-
ined estimation of error covariances [14], and multi-modal
predictions using Gaussian Mixture Models [15].

Appearance models use images as input, in order to infer
the current or future motion of an agent since it allows
the pose of a pedestrian to be observed, which provides
important cues. Some models perform prediction based on
a fixed elevated camera [16], [17], although these have
limitations for use with AVs which use moving cameras.
Further models [3], [18], [19], focus on intent prediction, e.g.
crossing vs not crossing. A disadvantage of these methods
is that they require manual intent annotation, which can be
hard to define and identify. In contrast, trajectory prediction
can be based on observations from sensors and the perception
system without requiring additional labeling. Others, e.g. [1],
[20], [21], [22], tackle trajectory prediction in the image
space rather than world space. Each of these methods re-
quire further processing stages to be able to infer predicted
pedestrian motion in the world space.

III. PROPOSED EXPERIMENTS

A. Dataset

To address the task of predicting pedestrian motion from
appearance, we construct the nuScenes-Appearance dataset
using camera and trajectory information present in the

Fig. 2: Overview of construction of nuScenes-Appearance
dataset. Pedestrian 3D detections are interpolated from 2Hz
to 10Hz and projected onto camera frames. Image crops
are recorded in the dataset along with associated trajectory
positions for each timestep. Images and trajectories are inputs
to a predictor, with the objective of predicting future motion.

nuScenes dataset [5]. nuScenes contains sensor data collected
from a fleet of autonomous vehicles operating in urban
environments. It includes 3D trajectory annotations at 2 Hz
and camera images at a variable rate (10 or 20 Hz). We
generate the nuScenes-Appearance dataset by interpolating
3D trajectory annotations at 10 Hz, finding the closest camera
timestamp for each camera frame, and projecting the 3D box
to form a 2D box in each camera frame. This box is expanded
to a square of twice the largest dimension and recorded in
an image database, where each cropped image is associated
with a recorded trajectory position.

This dataset includes camera images from different views,
e.g. front-left, front-right etc cameras. Since each pedestrian
can be visible from multiple views, each view is considered
a separate trajectory, while individual agents (pedestrians)
are kept in the same dataset split. We select pedestrian
instances from nuScenes and use the original data splits.
As annotations are not provided in the original test set, we
use the validation set as test for the nuScenes-Appearance
dataset, and define train and validation sets randomly from
the nuScenes train set with a 7:1 ratio.

B. Methods

We compare the different prediction models on a pre-
diction task with histories of length 1 s, and prediction
of 3 s. We predict multi-modal trajectories with spatial
distributions, and evaluate with standard trajectory error
measures: minADE/FDE, predRMS (most probable mode),
expRMS (expected RMS) and NLL. These measures evaluate
closest-mode prediction as well as probabilistic estimates,
which provide complementary evaluations of prediction ac-
curacy [4], [23]. An effective predictor needs to perform well
on each measure, indicating the ability to capture distinct
modes of behaviour, as well as accurate estimates of the
probability that each will occur.

Appearance-based prediction can assist with identifying
changes of motion, and to focus on this task we create
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Fig. 3: Overview of appearance-based model. Pedestrian
appearance of objects is encoded per frame with a CNN and
interpreted over time using temporal convolutions. Image and
trajectory encodings are combined and decoded to produce
predictions of multimodal trajectories, covariances and mode
probabilities to estimate future motion states of pedestrians.

a dataset selection that emphasises changes of motion, in
addition to the full dataset. Instances with high motion
change are defined based on an average displacement error
of >= 0.5m with a constant-velocity model. The motion-
changes dataset is constructed using the instances with high
motion change, and an equal number of random selections
from the remaining instances. Predictions are produced with
5 modes, which are encoded using a predicted trajectory
position for each timestep, as well as a 2x2 covariance matrix
representing the spatial error distribution, and a probability
weight for each predicted mode. Calculation of the evaluation
measures minADE/FDE, predRMS and NLL are described
in [4], and expRMS in [23]1.

Experiments are conducted using two appearance-based
predictors as described below, and a number of trajectory-
only predictors, including kinematic prediction (which pre-
dicts a single-mode) and a neural-network trajectory predic-
tor (DiPA [4]) that has been demonstrated as effective for
prediction of road users including pedestrians.

IV. PROPOSED METHODS

We describe two appearance-based predictors for utilising
an observed sequence of pedestrian images to influence
trajectory predictions. The processed images are combined
with the DiPA [4] trajectory predictor backbone to predict
multimodal future trajectories of predictions. An overview of
the model is shown in Figure 3.

One consideration for observing object appearance from
the point of view of an autonomous vehicle, is that the
camera is moving with the vehicle, and the detected region
of each identified pedestrian will contain errors, resulting in
visual effects such as background motion and misalignment
between sequential frames, which can interfere with process-
ing of visual features. To compensate for these effects, the
appearance-based model processes a sequence of indepen-
dent image frames using image features (two-dimensional),
without the use of temporal video features (three dimensional
including time). This is followed by temporal convolutions

1We calculate distances based on trajectory positions rather than grid cells
as used in [23]

TABLE I: Comparison on the nuScenes-Appearance dataset.

Dataset Full Motion Changes
Time Horizon 1 s 2s 3s 1 s 2s 3s

RMS CV 0.20 0.49 0.84 0.36 0.88 1.47
DA 0.25 0.59 0.98 0.40 0.98 1.61

predRMS
DiPA [4] 0.18 0.42 0.73 0.31 0.75 1.25
App-net 0.18 0.44 0.75 0.31 0.76 1.27

App-pose 0.19 0.47 0.80 0.30 0.75 1.26

minADE
DiPA [4] 0.03 0.08 0.13 0.06 0.14 0.23
App-net 0.04 0.08 0.14 0.07 0.15 0.24

App-pose 0.05 0.12 0.20 0.09 0.20 0.34

minFDE
DiPA [4] 0.06 0.16 0.28 0.12 0.28 0.48
App-net 0.07 0.16 0.29 0.12 0.29 0.49

App-pose 0.10 0.25 0.43 0.18 0.44 0.74

expRMS
DiPA [4] 0.20 0.47 0.73 0.35 0.87 1.46
App-net 0.20 0.48 0.81 0.36 0.87 1.45

App-pose 0.19 0.46 0.80 0.30 0.75 1.28

NLL
DiPA [4] -1.78 -0.43 0.58 -0.83 0.86 1.79
App-net -1.75 -0.38 0.64 -0.79 0.88 1.82

App-pose -1.15 4.96 15.90 1.34 16.19 26.81

to provide inference between frames over time. The encoded
features representing appearance are concatenated with the
trajectory encoding features, and fed into the trajectory
decoder of the DiPA model [4]. We test two implementa-
tions, one (App-net) uses a CNN (MobileNetV3Small [24])
which is trained against the mode prediction loss, and a
second implementation (App-pose) using pre-calculated pose
features [25] which are passed to the temporal convolution
layer as a vector of 17 × 2 features of pose positions in
the image. These appearance-based predictors allow visual
cues to influence predicted trajectories, and the estimates of
probabilities of each trajectory mode.

The DiPA model used for the trajectory prediction ex-
periments uses the same network backbone, without using
the feed from the appearance model. The DiPA predictor
uses stages of temporal convolution, and MLP layers for
processing the encoding and decoding outputs of mode
probabilities, covariances and trajectory modes. The original
model processes interactions between neighbouring agents,
however as this experiment performs single agent prediction
agent-agent interactions are not used. Training is performed
using the losses described in [4], which balance capturing
distinct behaviour modes with estimating the probability
distribution accurately.

V. RESULTS

We compare methods on the two presented datasets us-
ing standard trajectory error metrics. Baselines include a
Constant Velocity (CV) and a Decaying Acceleration (DA)
model. DA relies on Constant Acceleration for short-term
and Constant Velocity for the long-term using an exponential
decay function, aoe

−λt, where a0 is the initial observed
acceleration and the decay rate λ equals to 5.5 s−1. Results
are reported in Table I. Among physics-based models, CV is
best. Accelerations can capture motion initiations, but higher
order derivatives are more difficult to estimate and noisy
values can be detrimental. Since unimodal and multimodal
prediction are distinct tasks, unimodal predictors are evalu-
ated with RMS only, which is comparable to predRMS. We



do not evaluate unimodal physics-based models with other
metrics accounting for multi-modality and uncertainty.

The DiPA trajectory-only prediction model provides ac-
curate predictions that improves over the physics-based
baselines, and captures distinct behaviours along with good
probabilistic estimates, on both the full and motion-changes
datasets. Differences between results on the full dataset are
small, as the data is dominated by simple motion behaviours,
which does not allow differences between models on captur-
ing changes of motion to be seen.

The App-pose model improves over other models on
expRMS but shows higher error on NLL and minADE/FDE.
This indicates that the model has learnt to accurately capture
which mode is more likely, however has also followed a
conservative mode generation policy that results in instances
of the dataset not being covered by the model. The App-
net model produces balanced predictions on the various
evaluation measures, although has not shown advantages over
the other models.

These results show the benefits of multimodal evaluations
for describing different aspects of predictions, which is
useful for pedestrian trajectory prediction. Some advantages
of appearance-based models can be seen, however further
development is needed to allow appearance cues to provide
substantial advantages over trajectory-based predictors.

Analysis of the data shows some significant limitations
of the data and experiment. In a number of cases where
a pedestrian initiates motion, movement in the trajectory is
observed before motion or changes of gait occur according to
the observed images. This effect originates in the source data,
which may be caused by retrospective smoothing that allows
future positions to influence earlier trajectory positions. A
further effect occurs from interpolation between trajectory
samples when upsampling detections from 2Hz to 10Hz.
This effect provides unreasonable advantages to trajectory
prediction, allowing trajectory-only prediction methods to be
aware of motion before it takes place, and preventing advan-
tages of appearance-based models of being demonstrated.
This issue can be addressed through the use of a dataset
with a higher sampling rate of observations, and ensuring
that dataset filtering does not allow future information to
influence earlier timesteps. A further issue is that in many in-
stances the ground-truth motion does not accurately describe
the pedestrian motion as observed in the video, for example
showing trajectory motion where a person is standing still.
These errors in data will introduce incorrect measurements
of performance, for example a confident prediction (with
narrow covariance) of stationary motion will be heavily
penalised with high errors on NLL scores. Higher annotation
accuracy would allow the advantages of appearance-based
prediction to be more accurately measured.

VI. SUMMARY

In order to operate an autonomous vehicle in the vicinity of
pedestrians, it is important to be able to estimate their future
motion, and to identify significant cases such as changes of
motion, which can indicate when they may enter the road

Fig. 4: Examples of observed appearance data, along with
ground-truth (past - green, future - red, white - prediction
point) and multimodal predicted (blue) trajectory data. Top:
successful case of motion initiation prediction. Bottom:
example demonstrating limitations of source data. Ground-
truth trajectory (red) shows motion while pedestrian is still
stationary, and pre-empts motion before it occurs, which can
be caused by bidirectional (over time) data filtering.

area. To address this problem we introduce a new dataset
task to perform estimation of multimodal trajectories, using
pedestrian appearance to inform future motion. This task im-
proves over previous datasets such as PIE and JAAD, which
are limited to the camera frame, by evaluating prediction
of motion in the world space, and including evaluation of
probabilistic estimates of different modes of motion.

Comparison of these models shows that the neural-network
trajectory predictor improves over the kinematic model and
provides accurate predictions on all evaluation measures. The
pose-based model improves on weighted trajectory estimates,
indicating accurate mode estimation, however shows higher
error on other tasks as a result of a conservative mode
estimation strategy. Appearance-based prediction can provide
advantages from using motion cues to inform predicted
trajectories, however further development on this topic is
needed to clearly capture these advantages.

An important limitation of the dataset, is that trajectory
samples include motion before it takes place, for example as
a result of filtering of the dataset and through interpolation.
These effects interfere with the advantages of appearance-
based prediction from being demonstrated. An improved
experiment can be made by ensuring that dataset filter-
ing does not allow future information to influence earlier
timesteps, which will provide a more realistic experiment
that corresponds with real-world usage. A further limitation
is that it operates for a single pedestrian at a time, while
further improvements can support the prediction of multiple
agents together in a scene, including the use of appearance
for each agent.
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